J'aime bien dire que faire de la recherche en mathématiques est un peu comme explorer un palais magnifique et incompréhensiblement gigantesque, à la structure à la fois labyrinthique et élégante, — en étant totalement aveugle, si bien qu'on ne peut que tâtonner pour comprendre comment les salles sont agencées et quels bibelots précieux elles contiennent. Mais bien sûr il y a des ailes du palais qui sont bien explorées, transformées en musée depuis des siècles, dont plein de gens peuvent vous faire une visite guidée (parfois en vous montrant juste la Joconde que tout le monde vient admirer) ; et il y a les contrées lointaines et inexplorées où on se sent plus comme les archéologues qui déterrent des édifices entiers à la brosse à dent (hum, est-ce que je viens de trébucher sur un bout de la salle du trône ou des toilettes ?) ; et entre les deux, il y a les régions bien connues de certains, mais dont les cartes sont mal faites, incomplètes et, pour commencer, difficiles à trouver.
Ma comparaison a ses limites, bien sûr. Mais elle peut servir à donner une idée de ce dont je veux me plaindre ici (je me suis déjà plaint d'un problème semblable, mais probablement sans réussir à être très clair) : même quand on cherche à apprendre un domaine mathématique déjà connu (voire « bien » connu, même si ce genre de jugement sera toujours en bonne partie dans l'œil du spectateur), et d'autant plus si on cherche juste à s'en faire rapidement une idée générale sans forcément entrer dans les détails sordides, on se retrouve fréquemment devant une sorte de puzzle à résoudre, certes plus facile que si on devait tout découvrir soi-même, mais dans lequel il n'est pas pour autant facile de comprendre comment les pièces s'emboîtent.
Le problème est que l'immense majorité des articles mathématiques ont pour objet de démontrer un résultat nouveau, ce qui, dans ma métaphore palatiale, reviendrait environ à pointer l'existence d'un passage menant à telle pièce du palais, et donc à dresser une carte d'une minuscule région de celui-ci. Or, si on cherche à comprendre comment toute une aile est agencée et qu'on a seulement des cartes de ce genre, on est dans une situation un peu comme si on devait se faire une idée de la géographie générale de la France à partir d'une armoire de cartes au 1:25000, triées, qui plus est, par ordre alphabétique.
(Une question qui se pose inévitablement, d'ailleurs, en lien avec cette réflexion, est de savoir quel est le lectorat des articles de recherche mathématique. Certes, on peut naturellement penser qu'il s'agit presque exclusivement de mathématiciens professionnels, mais la proportion n'est peut-être pas si écrasante que ça. Après tout, moi qui ne suis pas physicien, je lis beaucoup d'articles de physique théorique. Et bien sûr, quand je le fais, j'ai tendance à chercher surtout les surveys, et/ou à sauter les calculs et les détails qui m'intéressent moins, et à rechercher là où sont les « grandes idées » de l'article ; souvent, bien sûr, l'abstract, l'introduction et les conclusions — à ce sujet, les mathématiciens ont d'ailleurs le snobisme de ne pas mettre de conclusions à leurs articles, ce qui est peut-être regrettable dans la perspective qu'ils puissent être lus par des non-spécialistes. Même si les non-spécialistes ne sont pas complètement étrangers aux mathématiques, ils peuvent être simplement des mathématiciens venus d'autres domaines et qui veulent connaître un peu le terrain de telle ou telle région du « palais » : il est réellement dommage d'écrire des articles fondamentalement hostiles à un tel lectorat.)
Bien sûr, il existe des articles, des monographies, des notes de cours, ou des livres (voire, d'encyclopédies), censés donner un panorama un peu plus vaste ! On parle généralement de surveys, ce qui colle assez bien avec ma comparaison cartographique. Mais d'une part ils sont loin d'être assez nombreux, ou de couvrir autant de territoire que les articles de recherche « active », même si on se limite aux terrains relativement bien explorés par la recherche : le problème est que, chez les hiérarques qui décident comment la recherche est évaluée comme chez les rédacteurs des journaux où elle paraît, ce genre d'activité est moins valorisé que le travail de fouille à la brosse à dent (hum, mes métaphores commencent à s'embrouiller un peu…). Je le regrette beaucoup, parce que je trouve que, de façon assez générale, la recherche mathématique (ou, à encore plus forte raison, informatique) souffre d'une surabondance de publications insignifiantes qui serait atténuée si on voulait bien un peu développer l'esprit de synthèse, de récapitulation et d'organisation à plus haut niveau. D'autre part, même quand des surveys existent, ils ont souvent tendance à présenter un petit nombre de résultats, certes dans un ordre qui met mieux en perspective leur rapport les uns aux autres, mais parfois sans donner pour autant une vision d'ensemble claire, et surtout, sans expliquer l'intuition, la philosophie, et les différents langages qui peuvent coexister, dans une branche ou sous-banche donnée de la science, et comment cette branche communique avec les régions adjacentes. Ici, la raison principale est que les auteurs de surveys aiment souvent privilégier leurs propres résultats, ou au moins, leur propre vision de l'état de l'art et de ce qui est important.
La manière dont j'essaie généralement d'apprendre un bout des mathématiques consiste d'abord à essayer de deviner les mots-clés qui pourraient m'y mener, puis faire des recherches sur ces mots-clés (le plus souvent avec Google, tout simplement : je n'ai pas trouvé que des moteurs plus spécialisés apportent vraiment quoi que ce soit de significatif). Je collecte un tas de références, qu'il s'agit ensuite de récupérer en ligne comme je peux (en maudissant, donc, la rapacité des éditeurs qui fait que les abonnements auxquels j'ai accès sont souvent la portion congrue, et je suis embêté de demander à des collègues d'autres institutions de m'aider, vu que la majorité des articles récupérés à ce stade ne m'intéresseront finalement pas ; s'il s'agit de livres, soit dit en passant, il y a des sites FTP pirates russes qui font certainement beaucoup plus pour les progrès de la recherche scientifique dans le monde que toutes les subventions des organismes bureaucratiques chargés de la financer). Cette première moisson me permet de collecter d'autres références (dans la bibliographie des articles en question) et d'affiner les mots-clés (parce que souvent je n'avais qu'une mauvaise idée de la terminologie), et j'essaie ainsi de faire un parcours en largeur du graphe d'adjacence du puzzle, si j'ose dire. J'imagine que cette façon de procéder n'a rien d'original.
J'ai parfois l'impression, cependant, que le parcours du graphe
d'adjacence va me mener à l'infini (peut-être que sa géométrie
naturelle est hyperbolique). En
fait, j'ai souvent l'impression désagréable qu'a Alice
(Through the Looking-Glass,
chapitre V) that whenever she looked hard at any
shelf, to make out exactly what it had on it, that particular shelf
was always quite empty: though the others round it were crowded as
full as they could hold
— quand je lis un article, il n'y a jamais
rien de bien passionnant dedans mais plein d'indications que les
articles cités en références sont très intéressants pour le genre de
question que je cherche à comprendre. Mais bon, je finis par me
constituer une petite pile d'articles à éplucher.
Ensuite, il faut décider dans quel ordre lire les choses, ce qui n'est souvent pas du tout une mince affaire. Mais ce n'est pas le seul problème : voici deux difficultés que je rencontre fréquemment, et qui me rendent absolument furieux :
Primo, il y a les définitions-dont-on-ne-sait-pas-si-elles-sont-équivalentes. Typiquement, on lit un premier article consacré à la foobarologie et qui donne une certaine définition d'un foobar bleuté et en tire des conséquences sur leur frobnication. Puis on lit un second article sur un sujet (apparemment) très proche, qui donne une définition différente d'un foobar bleuté et en tire d'autres conséquences : forcément, on se pose la question, s'agit-il bien du même objet ?
Peut-être que la réponse est oui, et que c'est absolument évident pour le spécialiste de foobarologie, mais comme on essaie de s'y initier, par définition, on n'est pas encore spécialiste. Peut-être que la réponse est oui et que c'est un fait bien connu mais non évident. Peut-être que la réponse est non, mais que la différence est hautement technique et sans grande importance. Ou peut-être que c'est non, parce qu'il y a une hypothèse essentielle dans le cadre où s'est placé un des deux auteurs (peut-être qu'il est spécialiste de frobnification compacte, et que du coup il ne considère que les foobars compacts, et il n'a pas pris la peine de le dire, ou en tout cas, de le souligner de façon indiscutablement spectaculaire). Ou à cause d'un formalisme différent (un auteur considère les foobars bleutés en géométrie différentielle, un autre en géométrie algébrique, et les définitions sont certes très fortement reliées mais ne sont absolument équivalentes qu'à l'intersection des deux domaines — ou même pas). Ou à cause d'un objet sous-jacent à la donnée (les deux définitions de X-foobars bleutés sont équivalentes si X est un bazqux orangé, mais si X est un bazqux plus général, l'une ne marche pas). Dans tous les cas, on aimerait bien soit une explication sur l'équivalence entre les deux définitions, soit un contre-exemple à celle-ci, et on ne sait même pas où chercher.
La situation à de quoi rendre fou : et c'est encore pire si un troisième article fait vaguement référence à une définition, et on ne sait même pas laquelle on est censé imaginer (maintenant qu'on sait qu'il y en a au moins deux !). Je prétends donc qu'il est du devoir de tout auteur qui introduit une définition, surtout quand elle est un peu centrale à son propos, de rappeler s'il en existe des variations significatives, et le cas échéant si elles sont pertinentes et en quoi.
Secundo, il y a la situation où on sent bien que deux concepts ont un très fort rapport entre eux (je ne veux pas dire qu'ils soient synonymes, mais qu'il serait intéressant d'étudier la combinaison des deux, ou d'étudier l'un dans le contexte de l'autre, ou quelque chose comme ça), et qu'on ne trouve rien qui mentionne les deux à la fois. À nouveau, cela peut être pour différentes raisons : peut-être qu'on a mal compris et que ces concepts ne sont pas applicables l'un à l'autre ; peut-être qu'il y a une raison pour laquelle l'application de l'un à l'autre serait absolument triviale ; ou peut-être qu'elle se ramènerait à un autre problème trop simple ou trop classique ; peut-être au contraire que c'est trop compliqué et que personne n'a rien réussi à dire d'intéressant (mais que personne n'ose, et c'est bien dommage, écrire ce fait explicitement pour aider le débutant qui se demande pourquoi la connexion n'est pas faite) ; ou peut-être, ce qui est malheureusement fréquent, que l'un des deux concepts porte un nom totalement différent quand il est étudié par les spécialistes de l'autre concept ce qui explique la non occurrence simultanée des deux mots. Bref, on peut passer plein de temps à essayer de comprendre ce qui est relié à quoi (et comment). Cette fois, il est plus difficile de faire des reproches à l'auteur de tel ou tel article, mais on peut au moins préconiser que tout article susceptible d'être lu par un non-initié signale autant que possible les connexions avec des sujets proches.
Un problème annexe que je rencontre est que j'accumule quantité d'articles sur mes disques durs, et que je ne sais pas les organiser de manière à les retrouver ensuite : évidemment, je les étiquette par leur auteur, leur année et leur titre (ou du moins, les mots saillants du titre, enfin peu importe) ; mais si plus tard je veux réapprendre ce que j'aurai appris sur la frobnification des foobars bleutés et que j'aurai, évidemment, oublié dans l'intervalle, je devrai à nouveau essayer de retrouver par quel article il vaut mieux commencer, qui dans ma pile d'auteurs a écrit sur ce sujet, et où peut bien se cacher ce petit paragraphe qui m'avait un peu plus éclairé que les autres.
[À suivre… Je voulais continuer en donnant l'exemple des difficultés que j'ai eu à lire des introductions sur la théorie des variétés sphériques et sur l'analyse harmonique sur les espaces homogènes sous les groupes compacts, mais l'écriture de cette entrée s'éternisant, il vaut mieux que je publie déjà ça.]