David Madore's WebLog: Pourquoi l'Univers est-il si atypique ?

Index of all entries / Index de toutes les entréesXML (RSS 1.0) • Recent comments / Commentaires récents

Entry #1884 [older|newer] / Entrée #1884 [précédente|suivante]:

(mardi)

Pourquoi l'Univers est-il si atypique ?

Je vais commencer par une anecdote personnelle. Quand j'étais petit, je me suis demandé ce qui arrive quand on meurt. ★ Et j'ai eu l'idée de la réponse suivante : si l'Univers est infini dans le temps, à force, il y aura bien une civilisation qui apparaîtra et qui sera suffisamment avancée et intelligente et bienveillante pour ressusciter les morts, et qui le fera (il est suffisant que cette civilisation puisse observer le passé de l'Univers avec suffisamment de précision pour mesurer l'état de mon cerveau au moment de ma mort, et le reconstruire précisément) ; peu importe le temps que ça prendra, il suffit que ça se produise, même si cela doit prendre 500 milliards d'années : alors, quand je mourrai, j'aurais l'impression de me réveiller instantanément dans une telle civilisation, et on me dira tout va bien, Monsieur, vous venez d'être ressuscité. ★ Puis, plus tard, je me suis dit : et si non ? Pourquoi penser qu'une telle civilisation naîtra forcément ? Alors, ai-je pensé, il arrivera quand même (et même si ça prend 10101000 ans), par fluctuations quantiques dans l'Univers infini, qu'apparaisse un cerveau qui continue exactement le cerveau que j'avais au moment de mourir, et ce sera comme ça que je ressusciterai — le problème étant que ce cerveau apparu par fluctuation quantique dans un Univers vide ne sera pas promis à un long avenir, et il mourra presque instantanément, et sans doute pas de façon très plaisante, pour être ressuscité de nouveau par une fluctuation quantique ultérieure (encore beaucoup d'années plus tard), ce qui signifie que je serai éternellement coincé dans un cycle infini de morts et résurrections (la période vivante durant un temps négligeable et la période morte des zilliards d'années, mais je ne sentirai que la période vivante). Pire (me suis-je dit), comme seule importera la création de ce qui faut de cerveau pour soutenir ma conscience, et je serai même sans mémoire et sans pensée, plongé dans une abîme de chaos. ★ Voilà, je venais de m'imaginer une version scientifique du paradis et de l'enfer. Je ne sais pas si j'ai jamais vraiment cru à l'une ou à l'autre de ces hypothèses, mais je me rappelle que la seconde idée m'a beaucoup angoissé (j'imaginais une éternité constituée de fractions de secondes où mon cerveau apparaît entouré de chaos, pour être aussitôt oblitéré).

Je pense maintenant que ces réflexions enfantines sont surtout les conséquences logiques d'une vision assez naïve de la conscience (« pour que je ressuscite, il faut et il suffit de recréer mon cerveau », ou même un petit bout de mon cerveau dont j'imaginais qu'il soutenait presque magiquement ma conscience — peut-être la glande pinéale). En fait, les questions soulevées sont profondes (ce qui ne veut pas dire qu'il y ait forcément des choses intelligentes à dire dessus — wovon man nicht sprechen kann, darüber muß man schweigen), mais ce n'est pas ce dont je voulais parler aujourd'hui (voyez plutôt de vieilles entrées comme celle-ci).

La question préoccupante soulevée, qui est à la fois une question scientifique assez sensée et une interrogation métaphysique profonde, est la suivante : pourquoi l'Univers n'est-il pas plein de chaos ?

C'est un peu difficile à expliquer pourquoi c'est une question naturelle et importante, compte tenu de ce que nous savons de la physique, ou d'ailleurs quel est le rapport avec ce que je disais juste avant. Peut-être que je devrais laisser la parole à cette vidéo (d'un exposé à TED) qui expose le problème probablement mieux[#] que je ne saurais. Mais je vais quand même essayer.

Compte tenu de ce que nous savons de la physique, si l'Univers est infini dans le temps ou d'ailleurs dans l'espace (ou s'il y a, dans un certain sens, une infinité d'Univers, que ce soit « en parallèle » ou en succession dans le temps), on doit croire que par fluctuations quantiques, tout ce qui est matériellement possible finira par se produire. Le problème se pose déjà en physique statistique classique (si on attend suffisamment longtemps, il viendra un moment où tous les atomes d'air de cette pièce seront concentrés dans un centimètre cube dans le coin), et la mécanique quantique prévoit que ce phénomène se produit même dans le vide : des particules apparaissent de nulle part et disparaissent généralement un court instant plus tard. Je dis généralement, parce que si on attend assez longtemps (assez longtemps voulait dire très très très longtemps, mais ce n'est rien devant l'infini), il apparaîtra n'importe quelle configuration de particules et même arbitrairement longtemps. Y compris mon cerveau (ou toute chose qu'on pourrait qualifier de mon cerveau, dans tous les états possibles, une infinité de fois, et pour des durées arbitrairement longues). Voire, la Terre entière, ou toute notre galaxie, ou tout ce que nous pouvons observer actuellement de l'Univers.

La réaction (sensée), quand on fait de la physique, c'est de se dire : on s'en fout, ces fluctuations quantiques majeures se passent dans un temps tellement long qu'elles ne nous préoccupent en rien.

Mais la question qui doit se poser est aussi : comment savons-nous, au juste, que nous ne sommes pas actuellement dans une telle fluctuation ? Après tout, dans toute l'histoire infinie de l'Univers, il apparaît régulièrement des cerveaux de David Madore qui se demandent suis-je dans une fluctuation quantique ? probablement pas, et parmi ces cerveaux de David Madore, il y en a une infinité qui a tort (en fait, ils sont dans une fluctuation quantique et disparaissent très rapidement) et au plus environ un qui a raison. Pourquoi suis-je persuadé d'être celui-là ? Pourquoi suis-je persuadé d'être environ 13.7 milliards d'années après le Big Bang et pas 10101000 années après, dans une fluctuation quantique qui se trouve donner l'illusion que je suis environ 13.7 milliards d'années après le Big Bang ? On a tendance à répondre parce que c'est beaucoup plus simple de supposer cela que ceci, mais qu'est-ce que simple signifie ? (Comme je l'ai expliqué, pour la majorité écrasante des cerveaux de David Madore dans l'histoire de l'Univers et qui observent un Univers apparemment vieux de 13.7 milliards d'années, c'est, en fait, une illusion. Il est difficile d'expliquer pourquoi on devrait supposer que les choses sont « simples » quand la majorité des choses sont « compliquées ».)

[Ajout : On me signale que le nom standard de cette hypothèse est le cerveau de Boltzmann.]

Cette question admet énormément de variantes (il n'est d'ailleurs pas forcément évident d'expliquer le rapport entre elles). La version plus physique et moins métaphysique est : l'entropie du Big Bang est très faible, beaucoup plus faible que ce que peut expliquer l'explication usuelle (le principe anthropique), à savoir elle est faible parce que si l'Univers était chaos, nous ne serions pas là pour l'observer : cette explication ne marche pas, parce qu'elle prédit que l'Univers devrait être juste assez ordonné pour que nous soyons là pour l'observer (ou, en fait, pour que mon cerveau existe et se fasse cette réflexion), or apparemment ce n'est pas le cas, puisque nous observons un monde ordonné assez vaste (dans le temps et dans l'espace) autour de nous.

Une autre variante que j'aime bien (et que je présentais plus en détails ici), même si elle est plus délicate à expliquer est la suivante : soit U l'Univers actuel, avec toute son histoire, entre U(0) le Big Bang et U(13.7Gyr) l'instant présent. Maintenant, construisons un Univers U′ comme ceci : je décide que U′(13.7Gyr) va être très semblable à l'instant présent de l'Univers U, mais je fais un très petit changement, disons dans les ailes d'un papillon en Nouvelle-Zélande, tout le reste étant absolument identique. Maintenant, comme les lois de la physique (pour autant que nous les connaissions) sont déterministes vers le futur et le passé, je peux simuler l'Univers U′ soit vers le futur (ce n'est pas très intéressant, il ressemble grosso modo à U, au moins au début, et même si des différences importantes vont apparaître, elles ne sont pas vraiment passionnantes, disons en tout cas que si on voyait un film du futur de U′, on le trouverait plausible), mais aussi vers le passé. Et là les choses sont catastrophiquement différentes : si je regarde un film de l'histoire U′ en m'approchant de t=0, je vais avoir l'impression d'évoluer vers le futur et pas vers le passé, parce que l'entropie augmente (c'est un fait général : si on considère une situation physique typique, et qu'on trace son évolution dans un sens ou dans l'autre du temps, l'entropie augmente dans les deux sens : ce n'est pas le cas de l'Univers U — dont l'entropie diminue vers le passé — justement parce qu'il n'est pas typique, et c'est précisément ce que souligne le paradoxe dont je parle). Dans l'Univers U′, la « flèche du temps » pointe dans les deux sens en s'écartant de l'instant que j'ai pris comme point de départ. Autrement dit, si je regarde une cascade d'eau sur Terre, elle va couler dans le sens contraire entre U et U′ pour des instants inférieurs à mon point de départ (ou plutôt, dans le cône de lumière de passé de mon papillon). Et si je remonte carrément jusqu'au Big Bang (car en t=0, l'Univers U′ a aussi un Big Bang — encore qu'on ne sait pas vraiment si on ne doit pas plutôt le qualifier de Big Crunch vu que le temps apparaît inversé), ce Big Bang est très différent du Big Bang de U, il est beaucoup plus grumeleux, son entropie est beaucoup plus grande. La question est alors : pourquoi croyons-nous être dans l'Univers U plutôt que dans l'Univers U′ (dans lequel tous nos souvenirs du passé seraient des illusions), alors même que les Univers de ce type U′ sont beaucoup plus nombreux ? (Une autre question est à quoi ressemble l'Univers U′ il y a environ un an, et s'il y a dedans un processus qui pourrait ressembler à la vie. Je n'ai vraiment aucune idée à ce sujet.)

La situation est un peu la suivante : on a un singe qui tape censément au hasard sur une machine à écrire. Notre conception de la physique dépend plus ou moins du fait que ce singe tape effectivement au hasard. Voilà qu'on passe à côté de ce singe et qu'on remarque qu'il a tapé correctement l'acte III de Hamlet de Shakespeare. Est-il raisonnable de supposer qu'il a tapé les actes I et II avant ? Est-il raisonnable de penser qu'il tapera les actes IV et V après ? Si le singe tape vraiment au hasard, la réponse est assurément : non : on est en présence d'une coïncidence invraisemblable, mais il n'y a aucune raison de penser qu'elle durera, le singe devrait taper des choses ressemblant à klxjfs sdfkl.jsdf sd,fwerev banana ook ook arwecvwgp et pas Alas, poor Yorick! I knew him, Horatio. Après tout, si le singe tape infiniment longtemps, il tapera infiniment souvent l'acte III correctement, et l'immense majorité des fois il ne tapera pas les actes I et II avant ni les actes IV et V après. Ou alors on peut remettre en question l'hypothèse que le singe tape au hasard, en se disant qu'une coïncidence pareille est vraiment trop incroyable. Mais cela soulève alors la question : selon quelle règle tape-t-il ? Si c'est vraiment un singe, l'explication la plus vraisemblable est que quelqu'un me fait une blague. Mais si je trouve le texte de Hamlet codé de façon transparente dans les décimales de pi ? (Évidemment nous pensons que le texte de Hamlet se trouve effectivement dans les décimales de pi, puisqu'il se trouve dans les décimales de presque tout nombre réel, mais on s'attend à ce qu'il se trouve tellement loin que si on le recontrait effectivement vers la cent mille milliardème décimale, on en serait plus qu'un peu abasourdi.)

Si je croyais en Dieu, je sortirais certainement ça comme argument pour démontrer son existence : l'Univers est tellement incroyablement spécial que croire en un Créateur fournit une explication facilement tentante. La réponse usuelle apportée par le principe anthropique (c'est celle que suggère Dawkins dans The God Delusion), l'Univers est si spécial parce que s'il ne l'était pas, nous ne serions pas là pour l'observer ne convient pas parce que l'Univers est encore beaucoup plus spécial que ce qui serait nécessaire pour expliquer notre présence pour l'observer (un cerveau dans une mer de chaos). Pire encore, parmi tous les Univers possibles où existe une espèce vivante semblable à l'espèce humaine, dans la grande majorité d'entre eux cette espèce n'est pas venue là suite à un processus d'évolution par sélection naturelle mais par une sorte d'apparition spontanée (je ne sais pas exactement à partir de quoi, il faudrait savoir à quoi ressemble le passé de l'Univers U′ dans mon exemple plus haut, mais c'est probablement une sorte de soupe de matières organiques). Voilà qui apporterait de l'eau au moulin des cinglés religieux s'ils étaient capables de comprendre l'argument. (Si j'étais taquin, je suggérerais plutôt celle-ci.) Manifestement c'est une connerie, mais personne ne semble capable de fournir une vraie explication meilleure que l'Univers est tel qu'il est, c'est comme ça et c'est tout (et le singe a tapé le texte de Hamlet, ce sont des choses qui arrivent).

(On peut, bien sûr, remettre en question certaines des hypothèses standard sur les lois de la physique faites pour arriver au problème — que ce soit le fait que l'Univers est infini dans le temps ou dans l'espace ou le fonctionnement des fluctuations quantiques ou la réversibilité des lois de la physique — mais je crois que c'est rater la substance du problème que d'attaquer par là. Outre qu'une considération métaphysique ne devrait pas avoir des répercussions sur ce qu'on croit en physique, le problème ressurgit sous tellement de variantes différentes que ce n'est pas en attaquant les détails qu'on va le résoudre. L'état de l'Univers est très surprenant, nous ne sommes pas du tout dans un Univers typique, même pas dans un Univers typique capable de supporter la vie ou la supportant effectivement, il n'y a quasiment aucune hypothèse de physique là-dedans.)

[#] À un truc près, c'est quand il décrit l'Univers proche du Big Bang comme smooth pour dire qu'il a une entropie basse, et un peu plus tard l'air de la pièce comme smooth pour dire qu'il a une entropie élevée. C'est vrai (les systèmes gravitationnels évoluent vers des grumeaux quand leur entropie augmente, alors qu'un fluide au contraire s'homogénéise), mais c'est plutôt confusant et pas utile dans ce qu'il raconte.

↑Entry #1884 [older|newer] / ↑Entrée #1884 [précédente|suivante]

Recent entries / Entrées récentesIndex of all entries / Index de toutes les entrées