On me demande de trouver un exemple pédagogique d'un calcul pour lequel une calculatrice donnerait un résultat faux mais qu'un mathématicien saurait faire (en un temps raisonnable). Le meilleur exemple que je voie est celui-ci : sin((1+√2)200×π). Une calculatrice (par exemple celle de Google) renvoie un résultat bidon, alors que n'importe quel mathématicien compétent voit que (1+√2)200 + (1−√2)200 est un entier pair, si bien que sin((1+√2)200×π) = −sin((1−√2)200×π) est extrêmement petit, et on peut même en faire une estimation de tête : sin((1−√2)200×π) est plus petit que ((1−√2)200×π), qui est lui-même plus petit que (½)200×π, or 210=1024 est supérieur à et environ égal à 1000=103, donc (½)20×10×π est inférieur à et environ égal à 10−60×π, bref, de tête j'aurais dit que sin((1+√2)200×π) est compris entre −4×10−60 et 0. La valeur correcte est environ −8.75×10−77, donc mon estimation n'est pas terrible (quoique, en évaluant un peu plus finement le rapport entre 0.41 et 0.5 j'aurais réussi à être plus précis), mais c'est tout de même mieux que les 0.97 retournés par Google.
Quelqu'un a-t-il un meilleur exemple ?
⁂
À part ça, aucun rapport (si ce n'est celui des calculs auxquels dont on doit se méfier), mais mon poussinet et moi avons déclaré nos impôts[#] : à cause de l'arrondi à l'euro le plus proche pratiqué par l'administration fiscale, nous perdons un euro à être PACSés (par rapport à la situation où nous payerions nos impôts séparément). Ça c'est de l'optimisation fiscale du tonnerre !
[#] Dédicace spéciale
aux pédants pourfendeurs de métonymies qui trépignent en pensant on
ne déclare pas ses impôts, on déclare ses revenus
. Mais oui, moi
aussi je vous aime.