# Orders of non abelian simple groups

[Mathematics] [Computer science] [Programs] [Linux] [Literature]

## Conventions

Each table below lists a certain number of finite simple groups. Each table row has two cells: the first is the group “name” and the second is its order. The name is given according to the following conventions:

• `(alt n)` refers to the alternating group on n objects.
• `(lie family rank q)` refers to the Lie group of the family family (`a`, `b`, `c` or `d`) with rank rank (the rank of a maximal torus) on the finite field with q elements. Twisted Lie type groups are indicated with an integer before the family letter, as usual.
• `(spor-foo)` refers to a sporadic group. The sporadic groups are listed below.
• The Tits group, which is the derived subgroup (of index 2) of the group `(lie 2f 4 2)` (which is not simple), is written `(tits 2f 4 2)`. By analogy, we write ```(tits g 2 2)``` for the derived subgroup (of index 2) of ```(lie g 2 2)``` (it is isomorphic to `(lie 2a 2 9)`) and `(tits 2g 2 3)` for the derived subgroup (of index 3) of `(lie 2g 2 3)` (it is isomorphic to ```(lie a 1 8)```)

Sometimes several names have been given, when the groups are isomorphic but there is no reason to prefer one. However, some family isomorphisms have not been given:

• `(lie a 1 q)` is isomorphic to ```(lie b 1 q)```, `(lie c 1 q)` and `(lie 2a 1 q2)`.
• `(lie b 2 q)` is isomorphic to ```(lie c 2 q)``` (for q odd).
• `(lie d 3 q)` is isomorphic to ```(lie a 3 q)``` and `(lie 2d 3 q)` is isomorphic to `(lie 2a 3 q)`.
• `(lie 2d 2 q)` is isomorphic to ```(lie a 1 q)```.

For more details, see, e.g. M. Aschbacher, Finite group theory (Cambridge studies in advanced mathematics, 10). Note that for twisted groups we use a different convention in our choice of q.

Disclaimer: I make no assertion about the validity of the tables below. If you spot a mistake, tell me kindly about it, and don't hit me on the head.

## Table of all non abelian simple groups of order less than ten billion

The following table lists all non abelian (i.e. non cyclic) simple groups of order less than ten billion (i.e. 1010).
 `(alt 5) (lie a 1 4) (lie a 1 5)` 60 `(lie a 1 7) (lie a 2 2)` 168 `(alt 6) (lie a 1 9)` 360 `(lie a 1 8) (tits 2g 2 3)` 504 `(lie a 1 11)` 660 `(lie a 1 13)` 1092 `(lie a 1 17)` 2448 `(alt 7)` 2520 `(lie a 1 19)` 3420 `(lie a 1 16)` 4080 `(lie a 2 3)` 5616 `(lie 2a 2 9) (tits g 2 2)` 6048 `(lie a 1 23)` 6072 `(lie a 1 25)` 7800 `(spor-m11)` 7920 `(lie a 1 27)` 9828 `(lie a 1 29)` 12180 `(lie a 1 31)` 14880 `(alt 8) (lie a 3 2)` 20160 `(lie a 2 4)` 20160 `(lie a 1 37)` 25308 `(lie b 2 3) (lie 2a 3 4)` 25920 `(lie 2b 2 8)` 29120 `(lie a 1 32)` 32736 `(lie a 1 41)` 34440 `(lie a 1 43)` 39732 `(lie a 1 47)` 51888 `(lie a 1 49)` 58800 `(lie 2a 2 16)` 62400 `(lie a 1 53)` 74412 `(spor-m12)` 95040 `(lie a 1 59)` 102660 `(lie a 1 61)` 113460 `(lie 2a 2 25)` 126000 `(lie a 1 67)` 150348 `(spor-j1)` 175560 `(lie a 1 71)` 178920 `(alt 9)` 181440 `(lie a 1 73)` 194472 `(lie a 1 79)` 246480 `(lie a 1 64)` 262080 `(lie a 1 81)` 265680 `(lie a 1 83)` 285852 `(lie a 1 89)` 352440 `(lie a 2 5)` 372000 `(spor-m22)` 443520 `(lie a 1 97)` 456288 `(lie a 1 101)` 515100 `(lie a 1 103)` 546312 `(spor-j2)` 604800 `(lie a 1 107)` 612468 `(lie a 1 109)` 647460 `(lie a 1 113)` 721392 `(lie a 1 121)` 885720 `(lie a 1 125)` 976500 `(lie c 2 4)` 979200 `(lie a 1 127)` 1024128 `(lie a 1 131)` 1123980 `(lie a 1 137)` 1285608 `(lie a 1 139)` 1342740 `(lie c 3 2)` 1451520 `(lie a 1 149)` 1653900 `(lie a 1 151)` 1721400 `(alt 10)` 1814400 `(lie a 2 7)` 1876896 `(lie a 1 157)` 1934868 `(lie a 1 128)` 2097024 `(lie a 1 163)` 2165292 `(lie a 1 167)` 2328648 `(lie a 1 169)` 2413320 `(lie a 1 173)` 2588772 `(lie a 1 179)` 2867580 `(lie a 1 181)` 2964780 `(lie 2a 3 9)` 3265920 `(lie a 1 191)` 3483840 `(lie a 1 193)` 3594432 `(lie a 1 197)` 3822588 `(lie a 1 199)` 3940200 `(lie g 2 3)` 4245696 `(lie b 2 5)` 4680000 `(lie a 1 211)` 4696860 `(lie 2a 2 64)` 5515776 `(lie a 1 223)` 5544672 `(lie 2a 2 49)` 5663616 `(lie a 1 227)` 5848428 `(lie a 1 229)` 6004380 `(lie a 3 3)` 6065280 `(lie a 1 233)` 6324552 `(lie a 1 239)` 6825840 `(lie a 1 241)` 6998640 `(lie a 1 243)` 7174332 `(lie a 1 251)` 7906500 `(lie a 1 257)` 8487168 `(lie a 1 263)` 9095592 `(lie a 1 269)` 9732420 `(lie a 1 271)` 9951120 `(lie a 4 2)` 9999360 `(spor-m23)` 10200960 `(lie a 1 277)` 10626828 `(lie a 1 281)` 11093880 `(lie a 1 283)` 11332452 `(lie a 1 289)` 12068640 `(lie a 1 293)` 12576732 `(lie 2a 4 4)` 13685760 `(lie a 1 307)` 14467068 `(lie a 1 311)` 15039960 `(lie a 1 313)` 15331992 `(lie a 1 317)` 15927348 `(lie a 2 8)` 16482816 `(lie a 1 256)` 16776960 `(tits 2f 4 2)` 17971200 `(lie a 1 331)` 18132180 `(lie a 1 337)` 19136208 `(alt 11)` 19958400 `(lie a 1 343)` 20176632 `(lie a 1 347)` 20890788 `(lie a 1 349)` 21254100 `(lie a 1 353)` 21993312 `(lie a 1 359)` 23133960 `(lie a 1 361)` 23522760 `(lie a 1 367)` 24715248 `(lie a 1 373)` 25947372 `(lie a 1 379)` 27219780 `(lie a 1 383)` 28090752 `(lie a 1 389)` 29431740 `(lie a 1 397)` 31285188 `(lie a 1 401)` 32240400 `(lie 2b 2 32)` 32537600 `(lie a 1 409)` 34208760 `(lie a 1 419)` 36779820 `(lie a 1 421)` 37309020 `(lie a 1 431)` 40031280 `(lie a 1 433)` 40591152 `(lie a 1 439)` 42302040 `(lie a 2 9)` 42456960 `(lie 2a 2 81)` 42573600 `(lie a 1 443)` 43468932 `(spor-hs)` 44352000 `(lie a 1 449)` 45259200 `(lie a 1 457)` 47721768 `(lie a 1 461)` 48985860 `(lie a 1 463)` 49626192 `(spor-j3)` 50232960 `(lie a 1 467)` 50923548 `(lie a 1 479)` 54950880 `(lie a 1 487)` 57750408 `(lie a 1 491)` 59185140 `(lie a 1 499)` 62125500 `(lie a 1 503)` 63631512 `(lie a 1 509)` 65935860 `(lie a 1 521)` 70710120 `(lie 2a 2 121)` 70915680 `(lie a 1 523)` 71527572 `(lie a 1 529)` 74017680 `(lie a 1 541)` 79169940 `(lie a 1 547)` 81833388 `(lie a 1 557)` 86404068 `(lie a 1 563)` 89226492 `(lie a 1 569)` 92109720 `(lie a 1 571)` 93084420 `(lie a 1 577)` 96049728 `(lie a 1 587)` 101130708 `(lie a 1 593)` 104263632 `(lie a 1 599)` 107460600 `(lie a 1 601)` 108540600 `(lie a 1 607)` 111823968 `(lie a 1 613)` 115172892 `(lie a 1 617)` 117442248 `(lie a 1 619)` 118588020 `(lie a 1 625)` 122070000 `(lie a 1 631)` 125619480 `(lie a 1 641)` 131687040 `(lie a 1 643)` 132923532 `(lie a 1 512)` 134217216 `(lie a 1 647)` 135419688 `(lie b 2 7)` 138297600 `(lie a 1 653)` 139222212 `(lie a 1 659)` 143095260 `(lie a 1 661)` 144402060 `(lie a 1 673)` 152410272 `(lie a 1 677)` 155144028 `(lie a 1 683)` 159305652 `(lie a 1 691)` 164969340 `(lie a 1 701)` 172235700 `(lie d 4 2)` 174182400 `(lie a 1 709)` 178200060 `(lie a 1 719)` 185847120 `(lie a 1 727)` 192119928 `(lie a 1 729)` 193709880 `(lie a 1 733)` 196916052 `(lie 2d 4 4)` 197406720 `(lie a 1 739)` 201791340 `(lie a 1 743)` 205085832 `(lie 3d 4 8)` 211341312 `(lie a 1 751)` 211782000 `(lie a 2 11)` 212427600 `(lie a 1 757)` 216898668 `(lie a 1 761)` 220355160 `(lie a 1 769)` 227377920 `(lie a 1 773)` 230944572 `(alt 12)` 239500800 `(lie a 1 787)` 243721308 `(spor-m24)` 244823040 `(lie g 2 4)` 251596800 `(lie a 1 797)` 253130388 `(lie a 1 809)` 264737160 `(lie a 1 811)` 266705460 `(lie a 2 13)` 270178272 `(lie a 1 821)` 276693420 `(lie a 1 823)` 278720472 `(lie a 1 827)` 282804228 `(lie a 1 829)` 284860980 `(lie a 1 839)` 295294440 `(lie a 1 841)` 297411240 `(lie a 1 853)` 310324812 `(lie a 1 857)` 314710968 `(lie a 1 859)` 316919460 `(lie a 1 863)` 321367392 `(lie a 1 877)` 337262628 `(lie a 1 881)` 341898480 `(lie a 1 883)` 344232252 `(lie a 1 887)` 348931608 `(lie a 1 907)` 373070868 `(lie a 1 911)` 378028560 `(lie a 1 919)` 388075320 `(lie a 1 929)` 400882080 `(lie a 1 937)` 411328008 `(lie a 1 941)` 416618340 `(lie a 1 947)` 424638588 `(lie a 1 953)` 432761112 `(lie a 1 961)` 443751360 `(lie a 1 967)` 452115048 `(lie a 1 971)` 457748820 `(lie a 1 977)` 466286928 `(lie a 1 983)` 474930552 `(lie a 1 991)` 486620640 `(lie a 1 997)` 495512988 `(lie a 1 1009)` 513621360 `(lie a 1 1013)` 519754092 `(lie a 1 1019)` 529044420 `(lie a 1 1021)` 532165620 `(lie a 1 1031)` 547955880 `(lie a 1 1033)` 551150952 `(lie a 1 1039)` 560810640 `(lie a 1 1049)` 577159800 `(lie a 1 1051)` 580467300 `(lie a 1 1061)` 597194460 `(lie a 1 1063)` 600577992 `(lie a 1 1069)` 610805220 `(lie a 1 1087)` 642182208 `(lie a 1 1091)` 649297740 `(lie a 1 1093)` 652875132 `(lie a 1 1097)` 660069288 `(lie a 1 1103)` 670959312 `(lie a 1 1109)` 681968460 `(lie a 1 1117)` 696833748 `(lie a 1 1123)` 708123372 `(lie a 1 1129)` 719534280 `(lie a 1 1151)` 762422400 `(lie a 1 1153)` 766403712 `(lie a 1 1163)` 786518292 `(lie a 1 1171)` 802861020 `(lie 2a 2 169)` 811273008 `(lie a 1 1181)` 823605780 `(lie a 1 1187)` 836222508 `(lie a 1 1193)` 848967432 `(lie a 1 1201)` 866161200 `(lie a 1 1213)` 892384692 `(spor-mc)` 898128000 `(lie a 1 1217)` 901242048 `(lie a 1 1223)` 914637672 `(lie a 1 1229)` 928165380 `(lie a 1 1231)` 932704080 `(lie a 1 1237)` 946408908 `(lie a 1 1249)` 974220000 `(lie a 3 4)` 987033600 `(lie a 1 1259)` 997807860 `(lie 2a 3 16)` 1018368000 `(lie a 1 1277)` 1041219828 `(lie a 1 1279)` 1046119680 `(lie a 1 1283)` 1055965452 `(lie c 2 8)` 1056706560 `(lie a 1 1289)` 1070849640 `(lie a 1 1024)` 1073740800 `(lie a 1 1291)` 1075841940 `(lie a 1 1297)` 1090911888 `(lie a 1 1301)` 1101036300 `(lie a 1 1303)` 1106121912 `(lie a 1 1307)` 1116340068 `(lie a 1 1319)` 1147371720 `(lie a 1 1321)` 1152598920 `(lie a 1 1327)` 1168375728 `(lie a 1 1331)` 1178973180 `(lie a 1 1361)` 1260503760 `(lie a 1 1367)` 1277248248 `(lie a 1 1369)` 1282862520 `(lie a 1 1373)` 1294140372 `(lie a 1 1381)` 1316893980 `(lie a 1 1399)` 1369061400 `(lie a 1 1409)` 1398629760 `(lie a 2 16)` 1425715200 `(lie a 1 1423)` 1440736272 `(lie a 1 1427)` 1452920028 `(lie a 1 1429)` 1459037580 `(lie a 1 1433)` 1471324152 `(lie a 1 1439)` 1489883040 `(lie a 1 1447)` 1514870088 `(lie a 1 1451)` 1527467700 `(lie a 1 1453)` 1533792612 `(lie a 1 1459)` 1552872060 `(lie a 1 1471)` 1591504320 `(lie a 1 1481)` 1624183080 `(lie a 1 1483)` 1630772052 `(lie a 1 1487)` 1644003408 `(lie a 1 1489)` 1650645840 `(lie a 1 1493)` 1663984332 `(lie a 1 1499)` 1684126500 `(lie b 2 9)` 1721606400 `(lie a 1 1511)` 1724897160 `(lie a 1 1523)` 1766320572 `(lie a 1 1531)` 1794301380 `(lie a 1 1543)` 1836824232 `(lie a 1 1549)` 1858335300 `(lie a 1 1553)` 1872768912 `(lie a 1 1559)` 1894559160 `(lie a 1 1567)` 1923874848 `(lie a 1 1571)` 1938645420 `(lie a 1 1579)` 1968412980 `(lie a 1 1583)` 1983410352 `(lie a 1 1597)` 2036500788 `(lie a 1 1601)` 2051841600 `(lie a 1 1607)` 2074996968 `(lie a 1 1609)` 2082753960 `(lie a 1 1613)` 2098325892 `(lie a 1 1619)` 2121829020 `(lie a 1 1621)` 2129702220 `(lie a 1 1627)` 2153438628 `(lie a 1 1637)` 2193390108 `(lie a 1 1657)` 2274769368 `(lie a 1 1663)` 2299569792 `(lie a 1 1667)` 2316203148 `(lie 2a 2 289)` 2317678272 `(lie a 1 1669)` 2324549820 `(lie a 1 1681)` 2375051280 `(lie a 1 1693)` 2426278932 `(lie a 1 1697)` 2443517088 `(lie a 1 1699)` 2452166700 `(lie a 1 1709)` 2495721060 `(lie a 1 1721)` 2548663320 `(lie a 1 1723)` 2557559172 `(lie a 1 1733)` 2602349052 `(lie a 1 1741)` 2638555140 `(lie a 1 1747)` 2665928988 `(lie a 1 1753)` 2693491512 `(lie a 1 1759)` 2721243360 `(lie a 1 1777)` 2805641328 `(lie a 1 1783)` 2834156952 `(lie a 1 1787)` 2853274308 `(lie a 1 1789)` 2862865140 `(lie a 1 1801)` 2920861800 `(lie a 1 1811)` 2969786460 `(lie a 1 1823)` 3029213472 `(lie a 1 1831)` 3069268680 `(alt 13)` 3113510400 `(lie a 1 1847)` 3150435288 `(lie a 1 1849)` 3160680600 `(lie a 1 1861)` 3222619260 `(lie a 1 1867)` 3253889748 `(lie a 1 1871)` 3274848720 `(lie a 1 1873)` 3285361872 `(lie a 1 1877)` 3306455628 `(lie a 1 1879)` 3317036280 `(lie a 1 1889)` 3370278240 `(lie a 1 1901)` 3434916900 `(lie a 1 1907)` 3467543868 `(lie a 1 1913)` 3500376792 `(lie a 1 1931)` 3600117780 `(lie a 1 1933)` 3611315652 `(lie a 1 1949)` 3701735700 `(lie a 1 1951)` 3713143200 `(lie a 1 1973)` 3840176172 `(lie a 1 1979)` 3875317380 `(lie a 1 1987)` 3922504908 `(lie a 1 1993)` 3958145832 `(lie a 1 1997)` 3982025988 `(lie a 1 1999)` 3994002000 `(lie a 1 2003)` 4018026012 `(spor-he)` 4030387200 `(lie a 1 2011)` 4066362660 `(lie a 1 2017)` 4102868448 `(lie a 1 2027)` 4164195828 `(lie a 1 2029)` 4176534180 `(lie a 1 2039)` 4238591640 `(lie 2a 2 256)` 4279234560 `(lie a 1 2053)` 4326500412 `(lie a 1 2063)` 4390030992 `(lie a 1 2069)` 4428446220 `(lie a 1 2081)` 4505947680 `(lie a 1 2083)` 4518951852 `(lie a 1 2087)` 4545035208 `(lie a 1 2089)` 4558114440 `(lie b 3 3)` 4585351680 `(lie c 3 3)` 4585351680 `(lie a 1 2099)` 4623887100 `(lie a 1 2111)` 4703645760 `(lie a 1 2113)` 4717027392 `(lie a 1 2129)` 4824995280 `(lie a 1 2131)` 4838605980 `(lie a 1 2137)` 4879591608 `(lie a 1 2141)` 4907043540 `(lie a 1 2143)` 4920808032 `(lie a 1 2153)` 4990016712 `(lie a 1 2161)` 5045848560 `(lie a 1 2179)` 5172989580 `(lie a 1 2187)` 5230175508 `(lie a 1 2197)` 5302248588 `(lie a 1 2203)` 5345808612 `(lie a 1 2207)` 5374980768 `(lie a 1 2209)` 5389606560 `(lie a 1 2213)` 5418937692 `(lie a 1 2221)` 5477918820 `(lie a 1 2237)` 5597161908 `(lie a 1 2239)` 5612187840 `(lie a 1 2243)` 5642320332 `(lie a 2 19)` 5644682640 `(lie a 1 2251)` 5702908500 `(lie a 1 2267)` 5825382948 `(lie a 1 2269)` 5840814420 `(lie g 2 5)` 5859000000 `(lie a 1 2273)` 5871759072 `(lie a 1 2281)` 5933975880 `(lie a 1 2287)` 5980925808 `(lie a 1 2293)` 6028122732 `(lie a 1 2297)` 6059724888 `(lie a 1 2309)` 6155193660 `(lie a 1 2311)` 6171201960 `(lie a 1 2333)` 6349128852 `(lie a 1 2339)` 6398240940 `(lie a 1 2341)` 6414667740 `(lie a 1 2347)` 6464116788 `(lie a 1 2351)` 6497223600 `(lie a 1 2357)` 6547095468 `(lie a 1 2371)` 6664454220 `(lie a 1 2377)` 6715177128 `(lie a 1 2381)` 6749134980 `(lie a 1 2383)` 6766156752 `(lie a 1 2389)` 6817393740 `(lie a 1 2393)` 6851695032 `(lie a 1 2399)` 6903362400 `(lie a 1 2401)` 6920642400 `(lie a 2 17)` 6950204928 `(lie a 1 2411)` 7007475060 `(lie a 1 2417)` 7059921648 `(lie a 1 2423)` 7112629272 `(lie a 1 2437)` 7236632508 `(lie a 3 5)` 7254000000 `(lie a 1 2441)` 7272324840 `(lie a 1 2447)` 7326083088 `(lie a 1 2459)` 7434393060 `(lie a 1 2467)` 7507189548 `(lie a 1 2473)` 7562097672 `(lie a 1 2477)` 7598851428 `(lie a 1 2503)` 7840657512 `(lie a 1 2521)` 8011032120 `(lie a 1 2531)` 8106742380 `(lie a 1 2539)` 8183857140 `(lie a 1 2543)` 8222597232 `(lie a 1 2549)` 8280936300 `(lie a 1 2551)` 8300443800 `(lie a 1 2557)` 8359150068 `(lie a 1 2579)` 8576773980 `(lie a 1 2048)` 8589932544 `(lie a 1 2591)` 8697054240 `(lie a 1 2593)` 8717209632 `(lie a 1 2609)` 8879574960 `(lie a 1 2617)` 8961508248 `(lie a 1 2621)` 9002663220 `(lie a 1 2633)` 9126883752 `(lie 2a 5 4)` 9196830720 `(lie a 1 2647)` 9273245688 `(lie a 1 2657)` 9378742368 `(lie a 1 2659)` 9399937260 `(lie a 1 2663)` 9442422792 `(lie a 1 2671)` 9527777520 `(lie a 1 2677)` 9592130028 `(lie a 1 2683)` 9656771652 `(lie a 1 2687)` 9700027008 `(lie a 1 2689)` 9721703040 `(lie a 1 2693)` 9765151932 `(lie a 1 2699)` 9830567700 `(lie a 1 2707)` 9918242268 `(lie a 1 2711)` 9962274360 `(lie a 1 2713)` 9984339192

## Table of groups of rank at least 2 of order less than one quintillion

The following table lists non abelian simple groups of order less than one quintillion (i.e. 1018). It omits only the groups of Lie type of rank 1 (by the “rank” I mean the rank of a maximal torus; i.e. we only omit the linear groups L(2,q)).
 `(alt 5)` 60 `(lie a 2 2)` 168 `(alt 6)` 360 `(alt 7)` 2520 `(lie a 2 3)` 5616 `(lie 2a 2 9) (tits g 2 2)` 6048 `(spor-m11)` 7920 `(alt 8) (lie a 3 2)` 20160 `(lie a 2 4)` 20160 `(lie b 2 3) (lie 2a 3 4)` 25920 `(lie 2b 2 8)` 29120 `(lie 2a 2 16)` 62400 `(spor-m12)` 95040 `(lie 2a 2 25)` 126000 `(spor-j1)` 175560 `(alt 9)` 181440 `(lie a 2 5)` 372000 `(spor-m22)` 443520 `(spor-j2)` 604800 `(lie c 2 4)` 979200 `(lie c 3 2)` 1451520 `(alt 10)` 1814400 `(lie a 2 7)` 1876896 `(lie 2a 3 9)` 3265920 `(lie g 2 3)` 4245696 `(lie b 2 5)` 4680000 `(lie 2a 2 64)` 5515776 `(lie 2a 2 49)` 5663616 `(lie a 3 3)` 6065280 `(lie a 4 2)` 9999360 `(spor-m23)` 10200960 `(lie 2a 4 4)` 13685760 `(lie a 2 8)` 16482816 `(tits 2f 4 2)` 17971200 `(alt 11)` 19958400 `(lie 2b 2 32)` 32537600 `(lie a 2 9)` 42456960 `(lie 2a 2 81)` 42573600 `(spor-hs)` 44352000 `(spor-j3)` 50232960 `(lie 2a 2 121)` 70915680 `(lie b 2 7)` 138297600 `(lie d 4 2)` 174182400 `(lie 2d 4 4)` 197406720 `(lie 3d 4 8)` 211341312 `(lie a 2 11)` 212427600 `(alt 12)` 239500800 `(spor-m24)` 244823040 `(lie g 2 4)` 251596800 `(lie a 2 13)` 270178272 `(lie 2a 2 169)` 811273008 `(spor-mc)` 898128000 `(lie a 3 4)` 987033600 `(lie 2a 3 16)` 1018368000 `(lie c 2 8)` 1056706560 `(lie a 2 16)` 1425715200 `(lie b 2 9)` 1721606400 `(lie 2a 2 289)` 2317678272 `(alt 13)` 3113510400 `(spor-he)` 4030387200 `(lie 2a 2 256)` 4279234560 `(lie b 3 3)` 4585351680 `(lie c 3 3)` 4585351680 `(lie a 2 19)` 5644682640 `(lie g 2 5)` 5859000000 `(lie a 2 17)` 6950204928 `(lie a 3 5)` 7254000000 `(lie 2a 5 4)` 9196830720 `(lie 2g 2 27)` 10073444472 `(lie b 2 11)` 12860654400 `(lie 2a 3 25)` 14742000000 `(lie 2a 2 361)` 16938986400 `(lie a 5 2)` 20158709760 `(lie 2a 2 529)` 26056457856 `(lie 2b 2 128)` 34093383680 `(alt 14)` 43589145600 `(lie c 4 2)` 47377612800 `(lie a 2 25)` 50778000000 `(lie b 2 13)` 68518981440 `(lie a 2 23)` 78156525216 `(spor-ru)` 145926144000 `(lie 2a 2 625)` 152353500000 `(lie 2a 2 841)` 166557358800 `(lie a 4 3)` 237783237120 `(lie 2a 4 9)` 258190571520 `(lie a 2 27)` 282027786768 `(lie 2a 2 729)` 282056445216 `(lie a 2 31)` 283991644800 `(lie 2a 2 1024)` 366157135872 `(spor-sz)` 448345497600 `(spor-on)` 460815505920 `(spor-co3)` 495766656000 `(lie a 2 29)` 499631102880 `(alt 15)` 653837184000 `(lie g 2 7)` 664376138496 `(lie 2a 2 961)` 852032133120 `(lie b 2 17)` 1004497044480 `(lie c 2 16)` 1095199948800 `(lie a 2 32)` 1098404364288 `(lie 2a 3 49)` 1165572172800 `(lie a 2 37)` 1169948144736 `(lie a 3 7)` 2317591180800 `(lie 2a 2 1681)` 2660096970720 `(lie b 2 19)` 3057017889600 `(lie 2a 2 1369)` 3509983020816 `(lie a 2 43)` 3893910661872 `(lie c 3 4)` 4106059776000 `(lie g 2 8)` 4329310519296 `(lie d 4 3)` 4952179814400 `(lie 2a 2 2209)` 7933578895872 `(lie a 2 41)` 7980059337600 `(lie 2d 4 9)` 10151968619520 `(alt 16)` 10461394944000 `(lie a 2 49)` 11072935641600 `(lie 2a 2 1849)` 11682025843488 `(lie 3d 4 27)` 20560831566912 `(lie b 2 23)` 20674026236160 `(lie 2a 2 2809)` 20745981365616 `(lie g 2 9)` 22594320403200 `(lie d 5 2)` 23499295948800 `(lie a 2 47)` 23800278205248 `(lie 2d 5 4)` 25015379558400 `(lie 2a 2 2401)` 33219371640000 `(lie a 3 8)` 34558531338240 `(lie 2a 3 64)` 34693789777920 `(lie 2b 2 512)` 35115786567680 `(spor-co2)` 42305421312000 `(lie b 2 25)` 47607300000000 `(lie 2a 2 3481)` 48929657263200 `(lie a 3 9)` 50759843097600 `(lie 2a 4 16)` 53443952640000 `(lie a 2 53)` 62237108003616 `(lie a 2 61)` 63884982751200 `(spor-f22)` 64561751654400 `(lie a 2 64)` 93801727918080 `(lie 2a 3 81)` 101798586432000 `(lie b 2 27)` 102804157834560 `(lie a 2 67)` 135325289783376 `(lie a 2 59)` 146787542351760 `(lie a 6 2)` 163849992929280 `(alt 17)` 177843714048000 `(lie 2a 2 3721)` 191656636992240 `(lie b 2 29)` 210103196385600 `(lie 2a 2 5041)` 215209078277760 `(lie 2a 6 4)` 227787103272960 `(lie b 3 5)` 228501000000000 `(lie c 3 5)` 228501000000000 `(lie a 4 4)` 258492255436800 `(lie a 2 73)` 268768894995072 `(spor-f5)` 273030912000000 `(lie 2a 2 4096)` 281407330713600 `(lie g 2 11)` 376611192619200 `(lie 2a 2 4489)` 405978568998816 `(lie b 2 31)` 409387254681600 `(lie a 2 79)` 505620881962560 `(lie a 2 71)` 645623627090400 `(lie 2a 2 6889)` 750656410078176 `(lie 2a 2 5329)` 806310830350368 `(lie 2a 3 121)` 1036388695478400 `(lie c 2 32)` 1124799322521600 `(lie 2a 2 7921)` 1312032469255200 `(lie 2a 2 6241)` 1516868799014400 `(lie a 2 81)` 1852734273062400 `(lie 2a 2 6561)` 1852741245568320 `(lie a 3 11)` 2069665112592000 `(lie a 2 83)` 2251961353296816 `(lie b 2 37)` 2402534664555840 `(lie a 2 97)` 2612197345314816 `(alt 18)` 3201186852864000 `(lie f 4 2)` 3311126603366400 `(lie 2a 2 10201)` 3609172015066800 `(lie g 2 13)` 3914077489672896 `(lie a 2 89)` 3936086241056640 `(lie a 2 103)` 4222165056643872 `(lie 2a 2 11449)` 5726791697419872 `(lie a 2 109)` 6641311310615520 `(lie b 2 41)` 6707334818822400 `(lie 2a 2 9409)` 7836609208799616 `(lie 2a 2 12769)` 8860792800073536 `(lie b 2 43)` 10799893897531200 `(lie a 2 101)` 10827495027060000 `(lie 2a 2 10609)` 12666518353227648 `(lie a 3 13)` 12714519233969280 `(lie a 2 121)` 15315521833180800 `(lie a 2 107)` 17180347043675088 `(lie 2a 2 15625)` 19866953531250000 `(lie 2a 2 11881)` 19923964701735600 `(lie a 5 3)` 21032402889738240 `(lie a 2 127)` 22557001777261056 `(lie 2a 5 9)` 22837472432087040 `(lie 2a 2 16384)` 24017743449686016 `(lie c 5 2)` 24815256521932800 `(lie 2a 3 169)` 25452197883665280 `(lie b 2 47)` 26287655087416320 `(lie a 2 113)` 26582341554402816 `(lie 2a 2 17161)` 28908396044367840 `(lie 2b 2 2048)` 36011213418659840 `(lie b 2 49)` 39879509765760000 `(lie 2a 2 18769)` 41363788790194272 `(lie 2a 2 14641)` 45946617370848480 `(lie a 2 139)` 46448800925370480 `(lie 2g 2 243)` 49825657439340552 `(spor-ly)` 51765179004000000 `(lie a 4 5)` 56653740000000000 `(lie 2a 4 25)` 57604365000000000 `(lie a 2 125)` 59600799562500000 `(alt 19)` 60822550204416000 `(lie b 4 3)` 65784756654489600 `(lie c 4 3)` 65784756654489600 `(lie d 4 4)` 67010895544320000 `(lie 2d 4 16)` 67536471195648000 `(lie 2a 2 16129)` 67671071404425216 `(lie 3d 4 64)` 67802350642790400 `(lie g 2 16)` 71776114783027200 `(lie a 2 128)` 72053161633775616 `(lie 2a 2 22201)` 80974721219670000 `(lie a 2 131)` 86725110978620400 `(lie b 2 53)` 87412594259315520 `(lie a 2 151)` 90089701905420000 `(spor-f3)` 90745943887872000 `(lie a 2 157)` 123043374372144096 `(lie a 2 137)` 124091269852276608 `(lie 2a 2 19321)` 139346506548429600 `(lie a 2 163)` 166097514629752272 `(lie g 2 17)` 167795197370551296 `(lie 2a 2 27889)` 201648518295622272 `(lie a 2 169)` 221797724414797440 `(lie a 2 149)` 242924016786074400 `(lie b 2 59)` 255484940347310400 `(lie 2a 2 29929)` 267444174893824656 `(lie 2a 2 22801)` 270269262714825600 `(lie b 3 7)` 273457218604953600 `(lie c 3 7)` 273457218604953600 `(lie 2a 2 32041)` 351309192845176800 `(lie b 2 61)` 356575576421678400 `(lie 2a 2 24649)` 369130313886677616 `(lie 2a 2 26569)` 498292774007829408 `(lie a 2 167)` 604945295112210528 `(lie 2a 2 28561)` 665393448951722400 `(lie a 3 17)` 712975930219192320 `(lie g 2 19)` 796793353927300800 `(lie a 2 173)` 802332214764045216 `(lie b 2 67)` 911215823217986880

## Table of groups of rank at least 4 of order less than one quindecillion

The following table lists non abelian simple groups of order less than one quindecillion (i.e. 1048). It omits only the groups of Lie type of rank 3 or less.

This includes all the sporadic simple groups except one (the Monster).
 `(alt 5)` 60 `(alt 6)` 360 `(alt 7)` 2520 `(spor-m11)` 7920 `(alt 8)` 20160 `(spor-m12)` 95040 `(spor-j1)` 175560 `(alt 9)` 181440 `(spor-m22)` 443520 `(spor-j2)` 604800 `(alt 10)` 1814400 `(lie a 4 2)` 9999360 `(spor-m23)` 10200960 `(lie 2a 4 4)` 13685760 `(tits 2f 4 2)` 17971200 `(alt 11)` 19958400 `(spor-hs)` 44352000 `(spor-j3)` 50232960 `(lie d 4 2)` 174182400 `(lie 2d 4 4)` 197406720 `(lie 3d 4 8)` 211341312 `(alt 12)` 239500800 `(spor-m24)` 244823040 `(spor-mc)` 898128000 `(alt 13)` 3113510400 `(spor-he)` 4030387200 `(lie 2a 5 4)` 9196830720 `(lie a 5 2)` 20158709760 `(alt 14)` 43589145600 `(lie c 4 2)` 47377612800 `(spor-ru)` 145926144000 `(lie a 4 3)` 237783237120 `(lie 2a 4 9)` 258190571520 `(spor-sz)` 448345497600 `(spor-on)` 460815505920 `(spor-co3)` 495766656000 `(alt 15)` 653837184000 `(lie d 4 3)` 4952179814400 `(lie 2d 4 9)` 10151968619520 `(alt 16)` 10461394944000 `(lie 3d 4 27)` 20560831566912 `(lie d 5 2)` 23499295948800 `(lie 2d 5 4)` 25015379558400 `(spor-co2)` 42305421312000 `(lie 2a 4 16)` 53443952640000 `(spor-f22)` 64561751654400 `(lie a 6 2)` 163849992929280 `(alt 17)` 177843714048000 `(lie 2a 6 4)` 227787103272960 `(lie a 4 4)` 258492255436800 `(spor-f5)` 273030912000000 `(alt 18)` 3201186852864000 `(lie f 4 2)` 3311126603366400 `(lie a 5 3)` 21032402889738240 `(lie 2a 5 9)` 22837472432087040 `(lie c 5 2)` 24815256521932800 `(spor-ly)` 51765179004000000 `(lie a 4 5)` 56653740000000000 `(lie 2a 4 25)` 57604365000000000 `(alt 19)` 60822550204416000 `(lie b 4 3)` 65784756654489600 `(lie c 4 3)` 65784756654489600 `(lie d 4 4)` 67010895544320000 `(lie 2d 4 16)` 67536471195648000 `(lie 3d 4 64)` 67802350642790400 `(spor-f3)` 90745943887872000 `(alt 20)` 1216451004088320000 `(spor-f23)` 4089470473293004800 `(spor-co1)` 4157776806543360000 `(lie a 7 2)` 5348063769211699200 `(lie 2a 7 4)` 7434971050829414400 `(lie d 4 5)` 8911539000000000000 `(lie 2d 4 25)` 17880203250000000000 `(alt 21)` 25545471085854720000 `(lie 3d 4 125)` 35817806390625000000 `(lie d 6 2)` 50027557148216524800 `(lie 2d 6 4)` 51615733565620224000 `(spor-j4)` 86775571046077562880 `(lie a 4 7)` 187035198320488089600 `(lie 2a 4 49)` 188151359720376729600 `(lie a 5 4)` 361310134959341568000 `(alt 22)` 562000363888803840000 `(lie 2d 5 9)` 650084965259666227200 `(lie 2a 5 16)` 1120527288631296000000 `(lie d 5 3)` 1289512799941305139200 `(lie c 4 4)` 4408780839651901440000 `(lie a 4 8)` 4638226007491010887680 `(lie 2a 4 64)` 4656663745464977326080 `(alt 23)` 12926008369442488320000 `(lie 2a 4 81)` 15775810414207914240000 `(lie a 6 3)` 67034222101339041669120 `(lie 2a 6 9)` 72853912155490594652160 `(lie 2e 6 4)` 76532479683774853939200 `(lie a 4 9)` 78660280796419613491200 `(lie d 4 7)` 112554991177798901760000 `(lie c 6 2)` 208114637736580743168000 `(lie e 6 2)` 214841575522005575270400 `(lie 2d 4 49)` 225297574007560801689600 `(lie 2f 4 8)` 264905352699586176614400 `(alt 24)` 310224200866619719680000 `(lie 2a 8 4)` 325473292721108444774400 `(lie 3d 4 343)` 450782974156649555296512 `(lie 2a 5 25)` 468755520187500000000000 `(lie a 8 2)` 699612310033197642547200 `(spor-f24)` 1255205709190661721292800 `(lie a 5 5)` 1383059427750000000000000 `(lie a 4 11)` 1952052708565059186240000 `(lie f 4 3)` 5734420792816671844761600 `(lie b 4 5)` 6973279267500000000000000 `(lie c 4 5)` 6973279267500000000000000 `(alt 25)` 7755605021665492992000000 `(lie 2a 4 121)` 9775062020994743678515200 `(lie d 4 8)` 19031213036231093492121600 `(lie 2d 4 64)` 19040507889972842499932160 `(lie 3d 4 512)` 19045158721552047314829312 `(lie b 5 3)` 76457792934119864313446400 `(lie c 5 3)` 76457792934119864313446400 `(lie d 4 9)` 129182006871144805294080000 `(alt 26)` 201645730563302817792000000 `(lie 2d 4 81)` 258442783258674454981632000 `(lie 3d 4 729)` 516964372056378442547769600 `(lie a 4 13)` 539322992420959314658621440 `(lie 2a 4 169)` 539817086878048288131863040 `(lie d 5 4)` 1154606796534757164318720000 `(lie 2d 5 16)` 1156864092324658937856000000 `(lie d 7 2)` 1691555775522928280469504000 `(lie 2d 7 4)` 1718194449153210615595008000 `(alt 27)` 5444434725209176080384000000 `(lie a 4 16)` 15779626219308347912355840000 `(lie d 4 11)` 35749625435272978955066880000 `(lie a 5 7)` 61637759336805268655956377600 `(lie 2d 4 121)` 71509018527768710090176128000 `(lie a 6 4)` 72736898347485916060188672000 `(lie 2a 6 16)` 75201903100820623196160000000 `(lie 2a 4 256)` 78936815542186794177213235200 `(lie 3d 4 1331)` 143027806714329275383382337600 `(alt 28)` 152444172305856930250752000000 `(lie 2a 5 49)` 186016776523505544550632652800 `(lie 2a 7 9)` 261303669649855006027009228800 `(lie a 4 17)` 338200968038818404584356577280 `(lie 2a 4 289)` 338339148597703183660836986880 `(lie a 9 2)` 366440137299948128422802227200 `(lie a 7 3)` 480860607452861427947598643200 `(lie 2a 9 4)` 511425298104873890310468403200 `(lie 2a 4 361)` 977173932703833477815811840000 `(lie b 4 7)` 1298254740461168363656151040000 `(lie c 4 7)` 1298254740461168363656151040000 `(lie d 4 13)` 3852529280222076255464396697600 `(alt 29)` 4420880996869850977271808000000 `(lie a 4 19)` 4884441266449243967839995916800 `(lie d 6 3)` 6762844700608770238252960972800 `(lie d 5 5)` 6807663884896875000000000000000 `(lie 2d 4 169)` 7705598130371354482393144151040 `(lie 2a 5 64)` 13333428133641426820471078256640 `(lie 2d 6 9)` 13562847888583522730562256896000 `(lie 2d 5 25)` 13624044368878125000000000000000 `(lie 3d 4 2197)` 15411735887347424297802263464512 `(lie f 4 4)` 19009825523840945451297669120000 `(lie c 7 2)` 27930968965434591767112450048000 `(lie a 5 8)` 39841906041871272087686291128320 `(alt 30)` 132626429906095529318154240000000 `(lie c 4 8)` 319368723699461283992462111539200 `(lie a 4 23)` 479301733354145431228899668674560 `(lie 2a 4 529)` 479380675958187672030746165084160 `(lie c 5 4)` 1211875293642881119668928512000000 `(lie a 5 9)` 1234219157861100568481165377536000 `(lie 2a 5 81)` 1237651788606780971804679936000000 `(lie a 6 5)` 3376566710423156250000000000000000 `(lie 2a 6 25)` 3433311915953308593750000000000000 `(lie a 4 25)` 3546792884031271875000000000000000 `(lie 2a 4 625)` 3547247629053854882812500000000000 `(alt 31)` 4111419327088961408862781440000000 `(spor-f2)` 4154781481226426191177580544000000 `(lie d 4 16)` 5171856304513694291224292229120000 `(lie 2d 4 256)` 5172014139450888575020469059584000 `(lie 3d 4 4096)` 5172093060532095860985478879641600 `(lie d 4 17)` 7063078524055113438048890938982400 `(lie b 4 9)` 11123418742298669930322238341120000 `(lie c 4 9)` 11123418742298669930322238341120000 `(lie 2d 4 289)` 14126495318154482389193473874657280 `(lie a 4 27)` 22496309500661613496614846025474560 `(lie 2a 4 729)` 22498598614593707424412692897576960 `(lie 2a 4 841)` 25008200884103030567305642981440000 `(lie 3d 4 4913)` 28253328918503724754683541171725312 `(lie a 4 31)` 123949114743058166800606319677440000 `(lie a 4 29)` 125030738764126958896505609824204800 `(alt 32)` 131565418466846765083609006080000000 `(lie d 4 19)` 159158361656768411374158632762880000 `(lie 2d 4 361)` 318321608468897681201705054311296000 `(lie 2a 5 121)` 464822950208772455290406508567552000 `(lie 2a 4 961)` 619787224637877198842959461403852800 `(lie 3d 4 6859)` 636648102205613756788161925672142400 `(lie a 10 2)` 768105432118265670534631586896281600 `(lie d 8 2)` 911666827031785075278550369566720000 `(lie 2d 8 4)` 918817155086936330770931156779008000 `(lie 2a 10 4)` 1073060286276491879676057352352563200 `(lie a 4 32)` 1327888090416993633349851746716876800 `(lie 2a 4 1024)` 1327969219900665808907851296197836800 `(lie a 5 11)` 1392357762553459444742198951136000000 `(lie f 4 5)` 2131486317725501953125000000000000000 `(alt 33)` 4341658809405943247759097200640000000 `(lie b 6 3)` 7197966128645938515382156481789952000 `(lie c 6 3)` 7197966128645938515382156481789952000 `(lie e 6 3)` 14515406695082926420056516790429286400 `(lie 2e 6 9)` 14636855916969695633965120680532377600 `(lie b 4 11)` 15327546229480503060059133622302720000 `(lie c 4 11)` 15327546229480503060059133622302720000 `(lie 2d 5 49)` 26196189346044417086527270309724160000 `(lie d 4 23)` 33534710450786236362511171962632601600 `(lie a 4 37)` 43302723794489709591957513118813501440 `(lie 2a 4 1369)` 43304434856455091241537595712139747840 `(lie d 5 7)` 52386144472825139642572263782154240000 `(lie 2d 4 529)` 67069900242773884763849709722463068160 `(lie a 7 4)` 78099458182389588115529148326215680000 `(lie 2a 7 16)` 80746196495765988002371102310400000000 `(lie a 4 41)` 101760133111431188113689004683325440000 `(lie a 8 3)` 124190524600592082795473760093457612800 `(lie b 5 5)` 133004733151172695312500000000000000000 `(lie c 5 5)` 133004733151172695312500000000000000000 `(lie 3d 4 12167)` 134140279831887916573088093425719597312 `(lie 2a 8 9)` 134986051617828004413553989669145804800 `(alt 34)` 147616399519802070423809304821760000000 `(lie a 5 13)` 161092184393918097496815608751014338560 `(lie d 4 25)` 346387808751846011718750000000000000000 `(lie 2a 5 169)` 483719301348481422006364965518746490880 `(lie 2a 4 1681)` 508815439304901887864867375581216819200 `(lie 2d 4 625)` 692779164523934014160156250000000000000 `(lie 2f 4 32)` 1318633155799591447702161609782722560000 `(lie 3d 4 15625)` 1385561876095351204238891601562500000000 `(lie a 4 43)` 1595887956392417831205350794488522355200 `(lie 2a 4 1849)` 1595928123199349078437079293851334195200 `(lie d 4 27)` 2989011738370665985346394409847068569600 `(lie d 6 4)` 5081732431326820541485324550799360000000 `(lie 2d 6 16)` 5084214351928201162018406516391936000000 `(alt 35)` 5166573983193072464833325668761600000000 `(lie 2d 4 729)` 5978045974195331448835084065775800898560 `(lie b 4 13)` 6285473039035875453413769653194694246400 `(lie c 4 13)` 6285473039035875453413769653194694246400 `(lie 2a 4 2401)` 7337677425176661481809439391606400000000 `(lie e 7 2)` 7997476042075799759100487262680802918400 `(lie 3d 4 19683)` 11956114445971661401099296184508431605312 `(lie a 4 47)` 13494216377080499377044016426543000657920 `(lie 2a 4 2209)` 13494476443832832101504255435339944427520 `(lie d 4 29)` 22108842777741257305286800144429063680000 `(lie a 6 7)` 35832085525362833262818017603275320524800 `(lie 2a 6 49)` 36046006562300526399984520145908373913600 `(lie a 4 49)` 36687763179135206129681442068768686080000 `(lie d 5 8)` 42863636354909175368011800612065142374400 `(lie 2d 5 64)` 42866252623493721354850266861682871500800 `(lie 2d 4 841)` 44217810591353896474940217678294528384000 `(lie c 8 2)` 59980383884075203672726385914533642240000 `(lie 3d 4 24389)` 88435746219109527169955673235580044814400 `(lie d 4 31)` 143091666080492567452603981220366254080000 `(alt 36)` 185996663394950608733999724075417600000000 `(lie a 4 53)` 241247744371888735513047417462741927966720 `(lie 2a 4 2809)` 241250986447559796436216915678723414725120 `(lie 2d 4 961)` 286183951927383612437118273442037170176000 `(lie a 5 16)` 462663506025466305743674992991666176000000 `(lie 3d 4 29791)` 572368523623178976829475638779060789350400 `(lie 2a 4 3481)` 632929845494862313273985709870584375040000 `(lie 2a 5 256)` 1388671062000648235066960954309704941568000 `(lie d 4 32)` 1392432788285099374015554659384096194560000 `(lie 2d 4 1024)` 1392435444142407215799640710557659142553600 `(lie 3d 4 32768)` 1392436772074860374668712252110467615424512 `(lie a 4 61)` 1408728693453445991823083232100955447040000 `(lie 2a 5 289)` 1932587289526684689893546457218994597396480 `(lie d 5 9)` 2154683673871373733440812330742751559680000 `(lie 2a 11 4)` 2999761491491658579472011849648637476864000 `(lie a 6 8)` 3129044148368792621827017675376367700541440 `(lie a 4 59)` 3164618401119809990558800247642828433523200 `(lie 2d 5 81)` 4309513309243483910028450349897015296000000 `(lie 2a 4 4096)` 4459076884467615826758821900438250455040000 `(lie 2d 7 9)` 5740565134714480760418669730296013258752000 `(lie a 5 17)` 5795394013785237424397115311512356535664640 `(lie a 11 2)` 6441762292785762141878919881400879415296000 `(alt 37)` 6881876545613172523157989790790451200000000 `(lie 2a 4 3721)` 7043705547947636146992079458755390318707200 `(lie d 7 3)` 11470635634813395742481912276441576767488000 `(lie d 4 37)` 20289459049243181123881716449324759652249600 `(lie 2a 6 64)` 21990399392416152300419586336343205546557440 `(lie c 4 16)` 22213292630272506774419304600032866467840000 `(lie a 4 64)` 22295214281174901073561566575504169055027200 `(lie a 7 5)` 25761093646334667714843750000000000000000000 `(lie 2d 4 1369)` 40578961402065670830128063200686590471869440 `(lie 2a 7 25)` 52388048197552547504882812500000000000000000 `(lie a 4 71)` 53844701436153909735462382539780928938240000 `(lie a 4 67)` 66941746957474020251653306342343824090759680 `(lie 2a 4 4489)` 66942192204276497689283213275248835155425280 `(lie 3d 4 50653)` 81157966107779967023432292054656093507368512 `(lie f 4 7)` 86325573304608766361629193317905069834240000 `(lie a 5 19)` 94831635934576164702281959181934296199936000 `(lie b 4 17)` 98541824971852325333396205541648137034137600 `(lie c 4 17)` 98541824971852325333396205541648137034137600 `(alt 38)` 261511308733300555880003612050037145600000000 `(lie 2a 4 5041)` 269225011899352968936463676687222157933772800 `(lie 2a 5 361)` 284578104974202486212691074362603834752000000 `(lie d 4 41)` 359442360483660635755948488682167917076480000 `(lie a 4 73)` 524404013544576897950885008853943316627292160 `(lie 2a 4 5329)` 524406710104201719351396329354496084626933760 `(lie 2a 4 6241)` 698250834768707586064997668774185665495040000 `(lie 2d 4 1681)` 718885229775373595361956084929718148529152000 `(lie a 4 81)` 1272340709421046189596799681303594795991040000 `(lie d 4 43)` 1364022601397645064730035078412599625981440000 `(lie 3d 4 68921)` 1437770968359339696385933917626860786335033600 `(lie 2d 4 1849)` 2728046798703329672744339175235259404764595200 `(lie d 6 5)` 3246978048053003424316406250000000000000000000 `(lie a 4 79)` 3491240009420452900676157945390105263866060800 `(lie b 4 19)` 5406193620753705981253166539179841552005120000 `(lie c 4 19)` 5406193620753705981253166539179841552005120000 `(lie 3d 4 79507)` 5456095193316099299478057305936579673159400512 `(lie a 6 9)` 6274437692242927471137606015213542491815936000 `(lie 2a 6 81)` 6291890893137495817477729592740553149440000000 `(lie 2a 4 6561)` 6361727492134483558478723001731451617542348800 `(lie 2d 6 25)` 6494787375688201677978515625000000000000000000 `(lie d 9 2)` 7846393898179181843651374899795632943267840000 `(lie 2d 9 4)` 7877103854727828347931810809383874168094720000 `(alt 39)` 10198941040598721679320140869951448678400000000 `(lie a 4 83)` 11423795021851388726400818009968568271801070080 `(lie 2a 4 6889)` 11423834985940368979438714861963035569350932480 `(lie 2a 4 7921)` 12199328686046317588755572598251496281360640000 `(lie b 5 7)` 14798669658041409826117343924395087366717440000 `(lie c 5 7)` 14798669658041409826117343924395087366717440000 `(lie d 4 47)` 16462023071516403811813673324295773363660390400 `(lie 2d 5 121)` 18070888325551827072015085386972264430571520000 `(lie e 6 4)` 28509570260447546701277873018380921822248960000 `(lie 2d 4 2209)` 32924059637379216827840583429424162223233105920 `(lie d 5 11)` 36141327829894962495939566122393800592896000000 `(lie d 4 49)` 52874853905974667686820002639128921292800000000 `(lie a 4 89)` 60996470360898018008768230027241225332745011200 `(lie 3d 4 103823)` 65848132769113139108670473513055903566601126912 `(lie a 9 3)` 72169708433844014882243565028104091314526617600 `(lie 2a 5 529)` 76126430453812837157616669842862543358285578240 `(lie 2a 9 9)` 78443214723710253027384431366692794963433881600 `(lie c 6 4)` 85278137430613949474674174708223909560320000000 `(lie 2e 6 16)` 85696576147617709485896772387584983695360000000 `(lie f 4 8)` 89916256275114328125813913131505293998004633600 `(lie 2d 4 2401)` 105749744500024485231166848755917181420544000000 `(lie 3d 4 117649)` 211499525688143212781949351109624570566195840000 `(lie a 5 23)` 228341682719969271084600854470906416499415531520 `(lie a 4 101)` 253921786470663716138471472124062573602400000000 `(alt 40)` 407957641623948867172805634798057947136000000000 `(lie a 8 4)` 447244452196213365088128369288351077766266880000 `(lie d 4 53)` 475893323173051532948209538895474149249401958400 `(lie a 4 97)` 481365523384131587048104134998355422284684984320 `(lie 2a 4 9409)` 481366578345133031896163841160139925618067537920 `(lie 2d 4 2809)` 951786887595468464732248050532550277326023173120

## Table of sporadic simple groups

This table lists all the sporadic simple groups, and only them.
 `(spor-m11)` 7920 `(spor-m12)` 95040 `(spor-j1)` 175560 `(spor-m22)` 443520 `(spor-j2)` 604800 `(spor-m23)` 10200960 `(spor-hs)` 44352000 `(spor-j3)` 50232960 `(spor-m24)` 244823040 `(spor-mc)` 898128000 `(spor-he)` 4030387200 `(spor-ru)` 145926144000 `(spor-sz)` 448345497600 `(spor-on)` 460815505920 `(spor-co3)` 495766656000 `(spor-co2)` 42305421312000 `(spor-f22)` 64561751654400 `(spor-f5)` 273030912000000 `(spor-ly)` 51765179004000000 `(spor-f3)` 90745943887872000 `(spor-f23)` 4089470473293004800 `(spor-co1)` 4157776806543360000 `(spor-j4)` 86775571046077562880 `(spor-f24)` 1255205709190661721292800 `(spor-f2)` 4154781481226426191177580544000000 `(spor-f1)` 808017424794512875886459904961710757005754368000000000

## Scheme code

This link points the the Scheme program that was used to calculate these tables. It is provided (under the terms of the GNU General Public License) without any warranty, express or implied.