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Abstract

Using the theory of the universal torsor, we prove that two ratio-
nal points on a smooth projective toric variety over an infinite field
that are rationally equivalent can in fact be connected by a very free
rational curve. We also show a similar result over del Pezzo surfaces
of degree 5.

Introduction

Let X be a smooth projective variety over an infinite field k, and assume
that X is (geometrically) separably rationally connected, meaning that, over
the algebraic closure k̄, there exists an f : P

1
k̄
→ Xk̄ which is “very free” in

the sense that f ∗TX is ample (in other words, H1(P1, (f ∗TX)(−2)) = 0). If x
and y are two k-rational points of X (assuming there are any) which are “R-
equivalent”, that is, which can be joined by a chain of rational curves on X
(each defined over k), we can ask ourselves whether there exists f : P

1
k → X

defined over k such that f(0) = x, and f(∞) = y and H1(P1, (f ∗TX)(−2)) =
0: if such is the case, we say that x and y are R-equivalent by a single very
free rational curve.

It is true over k algebraically closed that any two points on a smooth
projective separably rationally connected variety X are in fact joined by a
single very free rational curve (see [7] for a proof of this fact as well as all
introductory material on rationally connected varieties).
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In the case where k is no longer algebraically closed but “large”, meaning
that every irreducible variety that has a smooth k-point has a Zariski dense
subset of them, for example when k is a local field, then the answer is again
affirmative: this is the result of a recent work by Kollár ([8], theorem 23)—
any two points (on a smooth projective rationally connected variety) which
are R-equivalent are so by a single very free rational curve.

For other fields k, however, the answer to the question is unknown, even
in some simple cases.

When X is a smooth del Pezzo surface of degree 4 over k, for example,
it is known that every universal torsor over X (a term which we will define
below) having a k-point is k-rational (see [3]), so two rationally equivalent
points on X are R-equivalent, but it is not known whether they can be joined
by a single very free rational curve. Perhaps more to the point, it can be
shown, using the technique of the present paper, that, for every R-equivalence
class α of X(k), there is a nonempty Zariski open set Uα of X such that if P
and Q are in α and in Uα then they are joined by a single very free rational
curve—but it remains unknown whether, in fact, Uα can be taken to be X.

A positive answer to the question in full generality (for any infinite field k
and any separably rationally connected variety X) is conceivable, but seems
out of reach with present techniques.

In this article we prove a positive result when X is a toric model (i.e.,
a smooth equivariant compactification of a torus) over an infinite field k:
this is possible because a universal torsor can be explicitly constructed, and
because rational curves can be moved thanks to the action of the torus. In
the next section, we also prove a positive result in the case where X is a del
Pezzo surface of degree 5 (another case in which the universal torsor is well
controlled). We start with some general remarks on very free R-equivalence.

1 General framework

We introduce a notation: if k is a field and X an irreducible variety over

k, and if x, y ∈ X(k), let x
X
↔ y stand for the following statement: there

exists an irreducible variety M over k such that M(k) is Zariski-dense in M ,
and a dominant and separable rational map F : M × P

1
99K X such that F

restricted to M ×{0} is constant equal to x and F restricted to M ×{∞} is
constant equal to y.
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The following proposition summarizes some general facts about this rela-
tion:

Proposition 1. Assume k is a field and X is an irreducible variety over k.
Then:

1. If U ⊆ X is a Zariski open set and x, y ∈ U(k) then x
X
↔ y if and only

if x
U
↔ y.

2. If X = P
n
k then x

X
↔ y for any two x, y.

3. Suppose p : Z 99K X is a dominant and separable rational map with Z
an irreducible variety over k: then, for any x, y ∈ Z(k) at which p is

defined, if x
Z
↔ y then p(x)

X
↔ p(y).

4. Suppose X is smooth projective: then, for any x, y ∈ X(k), if x
X
↔ y

then x and y are R-equivalent by a single very free rational curve.

The first fact is trivial (restrict F to U on the range).
To prove the second, consider x, y ∈ P

n
k(k) and take the family of all

smooth conics passing through x and y and parameterize them rationally:
obviously we can find an open set M in some affine space over k (so certainly
M(k) is dense) and a dominant and separable morphism F : M × P

1 → P
n

which takes M × {0} to x and M × {∞} to y.
The third statement is trivial: merely compose F with p.
To get the fourth, first notice that when X is projective we can by re-

stricting M assume that F is a morphism; now apply the following geometric
result (see, e.g., [7], II.3.10):

Proposition 2. Let k̄ be an algebraically closed field, M an irreducible va-
riety over k̄, and X a smooth projective variety over k̄. Let x ∈ X. Fi-
nally, let F : M × P

1 → X be a separable and dominant morphism such that
F (M ×{0}) = {x}. Then there exists a nonempty Zariski open set M 0 of M
such that for all p ∈ M 0 the morphism Fp : P

1 → X satisfies the condition
that F ∗

p TX be ample.

—and make use of the fact that M 0 has a point over k by assumption.
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2 R-equivalence on universal torsors

The goal of this section is to prove the following result:

Proposition 3. Let T be an algebraic torus over an infinite field k, and X
a smooth equivariant compactification of T ; then given two k-rational points
x, y of X, if x and y are rationally equivalent, they are R-equivalent by a
single very free rational curve.

To do this, we use the following result, whose proof will be given in the
appendix:

Proposition 4. Let T be an algebraic torus on a field k, and X a smooth
equivariant compactification of T ; then there exists a torus S over k, a “uni-
versal” S-torsor p : T → X, and an S-equivariant open embedding of T in
an affine space on which S acts linearly.

“Universal” is to be taken in the sense of [1], II.C (or [2], example 2.3.3),
which we presently recall. Call H1(X,S) the étale cohomology group classify-
ing S-torsors on X, and [T ] the class of p in it. Define a map χ : H1(X,S) →
HomGal(k̄/k)(S

∗, Pic X̄) which sends the class of an S-torsor on X, say S , and
a character λ ∈ S∗ = Hom(S̄, Ḡm) to the class of the Ḡm-torsor on X̄ de-
duced from S̄ by λ. To say that T is universal means that S∗ = Pic X̄ and
that χ([T ]) is the identity on Pic X̄.

We will need the following fact:

Lemma 5. Let T and X be as in proposition 3, and let p : T → X be a
universal torsor on X. Then there exists a point z ∈ T (k) such that the class
[T ×X Spec kz] ∈ H1(k, S) of the fiber of T over z is trivial, i.e. T has a
k-point over z.

Proof. Let α = [T ×X Spec ko] ∈ H1(k, S) be the class of the fiber of T over
the origin o ∈ T (k). Let T o be the torsor defined by [T o] = [T ] − α: then
T o is the universal torsor that is trivial1 above o, and, from the discussion in
[1], III (see also [2], 2.4.4), the map T (k) → H1(k, S), z 7→ [T o ×X Spec kz]
is surjective. In particular, there exists z such that [T o ×X Spec kz] = −α,
so [T ×X Spec kz] − α = −α, which proves that [T ×X Spec kz] is nil, what
we wanted.

1In fact, if the torsor T is that which we shall construct in the appendix, it is easy to
see that it is already the universal torsor trivial over o; however, we shall not use this fact,
which only very slightly simplifies the proof.
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Now apply lemma 5 to the universal torsor T given by proposition 4:
we see that there exists z′ ∈ T (k) such that the fiber of T over z ′ is trivial.
Apply now the same lemma to the universal torsor T x with trivial fiber over
x (in other words the torsor given by [T x] = [T ]− [T ×X Spec kx]): so there
exists z ∈ T (k) such that the fiber of T x over z is trivial. Let τz′−z : X → X
be the translation by z′ − z: the torsor τ ∗

z′−zT is still universal (since τz′−z

acts trivially on Pic X̄) and it is trivial over z—therefore it is isomorphic to
T x (which has the same property).

Let x′ = τz′−z(x) and y′ = τz′−z(y). Since T x ∼= τ ∗
z′−zT is trivial over x,

it follows that T is trivial over x′. But, since y is rationally equivalent to x
by [1], II.B, proposition 1, T x is also trivial over y, and therefore so is T

over y′. So there exist points P and Q of T (k) over x′ and y′ respectively,
and proposition 4 shows that P and Q live inside an open set of an affine
space A over k.

Finally, using the general facts laid out in proposition 1 (1–4), we have

P
A
↔ Q (use facts 1–2) so P

T
↔ Q (fact 1 again) and therefore x′ X

↔ y′

(fact 3: compose with p) so x
X
↔ y (compose with τz−z′) which gives the

desired conclusion (from fact 4).

3 Del Pezzo surfaces of degree 5

We now turn to the case where X is a del Pezzo surface of degree 5 over
k. Then it is known that there is a unique universal torsor p : T → X
on X (“unique” up to non-unique isomorphism), trivial over every point,
and that it is an open set of the Grassmanian variety Gr(2, 5) of lines in P

4

(Skorobogatov, [11], theorem 3.1.4).
If now x and y are two arbitrary k-rational points on X, pick k-rational

points in p−1(x) and p−1(y) (which exist because T is trivial over x and
y), corresponding to two lines ∆ and Λ in P

4. Now let Π and Π′ be two
hyperplanes in P

4 neither of which contains either ∆ or Λ and such that
the intersection points P, P ′ of Π, Π′ with ∆ are distinct and similarly for
the intersection points Q,Q′ of Π, Π′ with Λ. Then we have a rational map
Π×Π′

99K T → X taking a point on Π and one on Π′ to the line they define
(in general) and then to the image point by p in X. Again by the general

facts laid out in proposition 1, since (P, P ′)
Π×Π′

↔ (Q,Q′), we get x
X
↔ y and

consequently x and y are R-equivalent by a single very free rational curve.
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Thus, we have shown:

Proposition 6. Let X be a del Pezzo surface of degree 5 over an infinite field
k; then given any two k-rational points x, y of X, there exists f : P

1
k → X

such that f(0) = x and f(∞) = y with, further, f ∗TX ample.

Appendix: Explicit construction of a universal

torsor over a toric variety

Proposition 4 remains to be settled. A proof can be found in [10] (propo-
sition 8.5), but the one we give below, for the reader’s convenience, seems
much more straightforward.

Historical remark: The construction described here was introduced in [5] and [4].
Here we give a presentation similar to the one contained in [9], although universality of
the torsor is not shown there.

Let T ∗ = Homk̄(T̄ , Ḡm) be the lattice of characters of the torus T , and
T∗ = Homk̄(Ḡm, T̄ ) the lattice, dual to the former, of cocharacters. One and
the other are endowed with an action of the Galois group Γ = Gal(k̄/k).
We write T ∗

R
= T ∗ ⊗Z R for the real vector space in which T ∗ lives, and

T∗R = T∗⊗Z R for the real vector space, dual to the former, in which T∗ lives.
The general theory of toric varieties (cf. [6], in particular §2.3) allows us to
describe X by means of a fan Σ of strongly convex rational polyhedral cones
in T∗R. The fact that X is smooth means (cf. [6], §2.1) that every cone σ ∈ Σ
is spanned by part of a basis of T∗, determined uniquely by σ: call Bσ the
part in question, and let P =

⋃
σ∈Σ Bσ be the union of the Bσ for all σ ∈ Σ.

Then P is a finite part of T∗ which spans the latter and is stable under the
action of Γ. For every σ ∈ Σ, we have Bσ = σ ∩ P , and σ is spanned by
σ ∩ P .

Now let V∗ be the (free) lattice with basis P (with the obvious action
of Γ making it a permutation lattice), and V ∗ the dual lattice, and V∗R

and V ∗
R

the real vector spaces in which they respectively live. We call V
the dual torus to V ∗ (i.e. the torus of which V ∗ is the character lattice), so
V̄ = Spec k̄[zu : u ∈ V ∗]: since V ∗ is a permutation lattice, V is a quasi-trivial
torus. And let A be the affine space defined by the cone of V∗R spanned by
the elements of P . Since P spans T∗, we have a surjective morphism V∗ → T∗

and thus an injection T ∗ → V ∗.
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From the description in [6], §3.3, the lattice V ∗ is precisely the group
DivX̄\T̄ X̄ of T̄ -invariant divisors of X̄, by the arrow which sends a u ∈ V ∗ to∑

p∈P u(p)Dp (where Dp is the closure of the orbit of T̄ acting on X̄ associated
to the ray spanned by p in V∗R). With this identification, T ∗ → V ∗ sends
a u ∈ T ∗ to the principal divisor div(tu), and its cokernel ([6], §3.4) is the
Picard group of X̄, which is itself a lattice, say S∗, dual to a torus S. We
therefore have the short exact sequence of lattices 0 → T ∗ → V ∗ → S∗ → 0,
equal to 0 → k̄[T̄ ]×/k̄× → DivX̄\T̄ X̄ → Pic X̄ → 0, and the dual short exact
sequence of tori 1 → S → V → T → 1.

For every cone σ ∈ Σ, let σ∨ = {u ∈ T ∗
R

: (∀v ∈ σ)(〈u, v〉 ≥ 0)} denote
the dual cone, and let X̄(σ) = Spec k̄[tu : u ∈ T ∗ ∩ σ∨] be the spectrum of
the semigroup algebra of T ∗ ∩ σ∨: thus, X̄ is obtained precisely by gluing
the X̄(σ) for σ ∈ Σ (identifying the open set X̄(σ ∩ σ′) in X̄(σ) and X̄(σ′)).
Similarly, given a cone σ ∈ Σ, which is, therefore, spanned by a finite set
(called Bσ) of elements of P , we can consider the cone σ̃ in V∗R spanned by
the same elements of P , and its dual σ̃∨, a cone in V ∗

R
: let us call Ā(σ) =

Spec k̄[zu : u ∈ V ∗∩σ̃∨] the spectrum of the corresponding semigroup algebra.
Thus Ā(σ) is an open set in Ā, containing V̄ . Furthermore, the inclusion
T ∗ → V ∗, which manifestly sends T ∗∩σ∨ inside V ∗∩ σ̃∨, defines a morphism
Ā(σ) → X̄(σ).

To make the situation clearer, let us presently prove the following lemma
(lemma 5.1 of [9]):

Lemma 7. Let δ ∈ S∗ and let σ ∈ Σ. Then there exists a uδ ∈ V ∗ (not
necessarily unique) which maps to δ ∈ S∗ (by the arrow V ∗ → S∗ defined
above) and such that 〈uδ, p〉 = 0 for all p ∈ Bσ (in other words uδ ∈ V ∗ ∩
σ̃∨ ∩ (−σ̃∨)).

Proof. The morphism V ∗ → S∗ being surjective, there exists v ∈ V ∗ which
maps to δ ∈ S∗. Since Bσ is a subset of a basis of T∗, there exists ṽ ∈ T ∗

such that 〈ṽ, p〉 = 〈v, p〉 for all p ∈ Bσ. We then take uδ = v − ṽ.
A uδ as given by the previous lemma defines a zuδ ∈ k̄[zu : u ∈ V ∗ ∩ σ̃∨]

which is invertible in this algebra, since −uδ manifestly also belongs to σ̃∨.
We deduce the following description:

Fact 8. k̄[zu : u ∈ V ∗ ∩ σ̃∨], seen as a module over k̄[tu : u ∈ T ∗ ∩ σ∨], is
free and a basis is formed by invertible elements zuδ , one for each δ in S∗;
the free sub-module of rank 1 corresponding to a δ in S∗ is precisely the set
of linear combinations of the zu for those u ∈ V ∗∩ σ̃∨ for which u|S∗

(that is,
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the image of u by V ∗ → S∗) is δ. This can also be expressed by saying that
k̄[zu : u ∈ V ∗ ∩ σ̃∨] is graded by S∗ as an algebra over k̄[tu : u ∈ T ∗ ∩ σ∨],
each graded component containing an invertible element.

In particular, we see that if σ′ ⊆ σ in Σ, the tensor product of k[zu : u ∈
V ∗∩σ̃∨] with k̄[tu : u ∈ T ∗∩σ′∨] over k̄[tu : u ∈ T ∗∩σ∨] is k[zu : u ∈ V ∗∩σ̃′∨],
which means that the inverse image by Ā(σ) → X̄(σ) of X̄(σ′) is Ā(σ′), and,
more precisely, that the morphism Ā(σ′) → X̄(σ′) is exactly the restriction
of Ā(σ) → X̄(σ) to X̄(σ′). The union of the Ā(σ) for σ ∈ Σ, which we call
T̄ , comes from a variety T defined over k and open in A, and by gluing we
have a morphism T → X.

We also see that k̄[zu : u ∈ V ∗∩σ̃∨] is faithfully flat over k̄[tu : u ∈ T ∗∩σ∨].
Thus, the morphism T → X is faithfully flat. We get an action of V on
T because T has been constructed as a toric variety (with cones σ̃ ⊆ V∗R);
therefore, by restriction, we get an action of S on T , which by construction
leaves X invariant. To see that this gives us a torsor under S, it is enough
to see that each Ā(σ) → X̄(σ) is a torsor under S̄. In other words, we must
show that the morphism

θ : S̄ × Ā(σ) → Ā(σ) ×X̄(σ) Ā(σ) , (s, a) 7→ (s · a, a)

is an isomorphism. But the (co)morphism of the associated algebras from
which it comes is given by

θ∗ : k̄[zu : u ∈ V ∗ ∩ σ̃∨] ⊗k̄[tu:u∈T ∗∩σ∨] k̄[zu : u ∈ V ∗ ∩ σ̃∨]
→ k̄[χλ : λ ∈ S∗] ⊗k̄ k̄[zu : u ∈ V ∗ ∩ σ̃∨]

zu ⊗ zu′

7→ χu|S∗ ⊗ zu+u′

To see that this is indeed an isomorphism, notice that according to fact 8,
the left-hand side has a basis over k̄[tu : u ∈ T ∗∩σ∨] formed by the zuδ ⊗zu

δ′

with uδ as given in lemma 7, and the right-hand side has a basis formed
by the χλ ⊗ zu

δ′′ . And on these two bases, the homomorphism in question
is represented by a diagonal matrix whose coefficients are tuδ+u

δ′
−u

δ′′ (for
δ′′ = δ + δ′ and λ = δ), which are invertible in k̄[tu : u ∈ T ∗ ∩ σ∨].

It remains to see that this torsor p : T → X is indeed universal.
If σ ∈ Σ, since X̄(σ) is smooth, it is abstractly isomorphic to Ā

d × Ḡ
n−d
m

(where d, say, is the dimension of σ and n that of T ). In particular we
have Pic X̄(σ) = 0; and furthermore k̄[tu : u ∈ T ∗ ∩ σ∨]× = {tu : u ∈
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T ∗∩σ∨∩(−σ∨)}. The general exact sequence 0 → k̄[Ū ]×/k̄× → DivX̄\Ū X̄ →
Pic X̄ → 0 (cf. [2], (2.3.10)) when Pic Ū = 0 becomes, for Ū = X̄(σ),

0 → T ∗ ∩ σ∨ ∩ (−σ∨) → V ∗ ∩ σ̃∨ ∩ (−σ̃∨) → S∗ → 0

The dual short exact sequence of tori is 1 → S̄ → M̄σ → R̄σ → 1, where R̄σ

and M̄σ are quotients of T̄ and V̄ respectively. Furthermore, the quotient
morphism T̄ → R̄σ extends to X̄(σ) (of which T̄ is an open set): precisely,
the morphisms T̄ → X̄(σ) → R̄σ give, on the associated algebras,

k̄[tu : u ∈ T ∗ ∩ σ∨ ∩ (−σ∨)] → k̄[tu : u ∈ T ∗ ∩ σ∨] → k̄[tu : u ∈ T ∗]

By corollary 2.3.4 of [2], it is now sufficient to prove that Ā(σ) → X̄(σ) is
obtained as the pullback of M̄σ → R̄σ by the arrow X̄(σ) → R̄σ, moreover
in a way compatible with the restrictions when σ′ ⊆ σ. In other words, we
are to determine (in a natural way) the fiber product M̄σ ×R̄σ

X̄(σ); this is
the affine scheme whose algebra is the tensor product

k̄[zu : u ∈ V ∗ ∩ σ̃∨ ∩ (−σ̃∨)] ⊗k̄[tu:u∈T ∗∩σ∨∩(−σ∨)] k̄[tu : u ∈ T ∗ ∩ σ∨]

But (from fact 8) k̄[zu : u ∈ V ∗ ∩ σ̃∨] is free over k̄[tu : u ∈ T ∗ ∩ σ∨]
with basis {zuδ} for δ ∈ S∗; and for precisely the same reasons, k̄[zu : u ∈
V ∗ ∩ σ̃∨ ∩ (−σ̃∨)] is free over k̄[tu : u ∈ T ∗ ∩ σ∨ ∩ (−σ∨)] with the same
basis. That is to say that the above tensor product is (by the natural map)
k̄[zu : u ∈ V ∗ ∩ σ̃∨], in other words that M̄σ ×R̄σ

X̄(σ) = Ā(σ) (naturally).
This shows that the torsor p : T → X, obtained by gluing these different

Ā(σ) → X̄(σ), is indeed universal.

Acknowledgements: The author wishes to thank Jean-Louis Colliot-Thélène for his
illuminating explanations on the universal torsor and its use, and Emmanuel Peyre for
providing some of the references below and for inviting me to Grenoble to give a talk on
this construction. I am also indebted to Laurent Moret-Bailly for showing me how to state
clearly (and gather in a single place) the facts listed in proposition 1.

References

[1] J.-L. Colliot-Thélène & J.-J. Sansuc, “La descente sur les variétés
rationnelles”, in Journées de géométrie algébrique d’Angers 1979,
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