Very free R-equivalence on toric models

David A. Madore^{*}

15th April 2005

Abstract

Using the theory of the universal torsor, we prove that two rational points on a smooth projective toric variety over an infinite field that are rationally equivalent can in fact be connected by a very free rational curve. We also show a similar result over del Pezzo surfaces of degree 5.

Introduction

Let X be a smooth projective variety over an infinite field k, and assume that X is (geometrically) separably rationally connected, meaning that, over the algebraic closure \bar{k} , there exists an $f: \mathbb{P}^1_{\bar{k}} \to X_{\bar{k}}$ which is "very free" in the sense that f^*T_X is ample (in other words, $H^1(\mathbb{P}^1, (f^*T_X)(-2)) = 0$). If x and y are two k-rational points of X (assuming there are any) which are "Requivalent", that is, which can be joined by a chain of rational curves on X (each defined over k), we can ask ourselves whether there exists $f: \mathbb{P}^1_k \to X$ defined over k such that f(0) = x, and $f(\infty) = y$ and $H^1(\mathbb{P}^1, (f^*T_X)(-2)) =$ 0: if such is the case, we say that x and y are R-equivalent by a single very free rational curve.

It is true over k algebraically closed that any two points on a smooth projective separably rationally connected variety X are in fact joined by a single very free rational curve (see [7] for a proof of this fact as well as all introductory material on rationally connected varieties).

^{*}Département de mathématiques et applications, École normale supérieure, 45 rue d'Ulm, F75230 Paris cedex 05, France. Email address: david.madore@ens.fr

In the case where k is no longer algebraically closed but "large", meaning that every irreducible variety that has a smooth k-point has a Zariski dense subset of them, for example when k is a local field, then the answer is again affirmative: this is the result of a recent work by Kollár ([8], theorem 23) any two points (on a smooth projective rationally connected variety) which are R-equivalent are so by a single very free rational curve.

For other fields k, however, the answer to the question is unknown, even in some simple cases.

When X is a smooth del Pezzo surface of degree 4 over k, for example, it is known that every universal torsor over X (a term which we will define below) having a k-point is k-rational (see [3]), so two rationally equivalent points on X are R-equivalent, but it is not known whether they can be joined by a single very free rational curve. Perhaps more to the point, it can be shown, using the technique of the present paper, that, for every R-equivalence class α of X(k), there is a nonempty Zariski open set U_{α} of X such that if P and Q are in α and in U_{α} then they are joined by a single very free rational curve—but it remains unknown whether, in fact, U_{α} can be taken to be X.

A positive answer to the question in full generality (for any infinite field k and any separably rationally connected variety X) is conceivable, but seems out of reach with present techniques.

In this article we prove a positive result when X is a toric model (i.e., a smooth equivariant compactification of a torus) over an infinite field k: this is possible because a universal torsor can be explicitly constructed, and because rational curves can be moved thanks to the action of the torus. In the next section, we also prove a positive result in the case where X is a del Pezzo surface of degree 5 (another case in which the universal torsor is well controlled). We start with some general remarks on very free R-equivalence.

1 General framework

We introduce a notation: if k is a field and X an irreducible variety over k, and if $x, y \in X(k)$, let $x \stackrel{X}{\leftrightarrow} y$ stand for the following statement: there exists an irreducible variety M over k such that M(k) is Zariski-dense in M, and a dominant and separable rational map $F \colon M \times \mathbb{P}^1 \dashrightarrow X$ such that F restricted to $M \times \{0\}$ is constant equal to x and F restricted to $M \times \{\infty\}$ is constant equal to y.

The following proposition summarizes some general facts about this relation:

Proposition 1. Assume k is a field and X is an irreducible variety over k. Then:

- 1. If $U \subseteq X$ is a Zariski open set and $x, y \in U(k)$ then $x \stackrel{X}{\leftrightarrow} y$ if and only if $x \stackrel{U}{\leftrightarrow} y$.
- 2. If $X = \mathbb{P}_k^n$ then $x \stackrel{X}{\leftrightarrow} y$ for any two x, y.
- 3. Suppose $p: Z \dashrightarrow X$ is a dominant and separable rational map with Z an irreducible variety over k: then, for any $x, y \in Z(k)$ at which p is defined, if $x \stackrel{Z}{\leftrightarrow} y$ then $p(x) \stackrel{X}{\leftrightarrow} p(y)$.
- 4. Suppose X is smooth projective: then, for any $x, y \in X(k)$, if $x \stackrel{X}{\leftrightarrow} y$ then x and y are R-equivalent by a single very free rational curve.

The first fact is trivial (restrict F to U on the range).

To prove the second, consider $x, y \in \mathbb{P}_k^n(k)$ and take the family of all smooth conics passing through x and y and parameterize them rationally: obviously we can find an open set M in some affine space over k (so certainly M(k) is dense) and a dominant and separable morphism $F: M \times \mathbb{P}^1 \to \mathbb{P}^n$ which takes $M \times \{0\}$ to x and $M \times \{\infty\}$ to y.

The third statement is trivial: merely compose F with p.

To get the fourth, first notice that when X is projective we can by restricting M assume that F is a morphism; now apply the following geometric result (see, e.g., [7], II.3.10):

Proposition 2. Let k be an algebraically closed field, M an irreducible variety over \bar{k} , and X a smooth projective variety over \bar{k} . Let $x \in X$. Finally, let $F: M \times \mathbb{P}^1 \to X$ be a separable and dominant morphism such that $F(M \times \{0\}) = \{x\}$. Then there exists a nonempty Zariski open set M^0 of M such that for all $p \in M^0$ the morphism $F_p: \mathbb{P}^1 \to X$ satisfies the condition that $F_n^*T_X$ be ample.

—and make use of the fact that M^0 has a point over k by assumption.

2 R-equivalence on universal torsors

The goal of this section is to prove the following result:

Proposition 3. Let T be an algebraic torus over an infinite field k, and X a smooth equivariant compactification of T; then given two k-rational points x, y of X, if x and y are rationally equivalent, they are R-equivalent by a single very free rational curve.

To do this, we use the following result, whose proof will be given in the appendix:

Proposition 4. Let T be an algebraic torus on a field k, and X a smooth equivariant compactification of T; then there exists a torus S over k, a "universal" S-torsor $p: \mathscr{T} \to X$, and an S-equivariant open embedding of \mathscr{T} in an affine space on which S acts linearly.

"Universal" is to be taken in the sense of [1], II.C (or [2], example 2.3.3), which we presently recall. Call $H^1(X, S)$ the étale cohomology group classifying S-torsors on X, and $[\mathscr{T}]$ the class of p in it. Define a map $\chi: H^1(X, S) \to$ $\operatorname{Hom}_{\operatorname{Gal}(\bar{k}/k)}(S^*, \operatorname{Pic} \bar{X})$ which sends the class of an S-torsor on X, say \mathscr{S} , and a character $\lambda \in S^* = \operatorname{Hom}(\bar{S}, \bar{\mathbb{G}}_m)$ to the class of the $\bar{\mathbb{G}}_m$ -torsor on \bar{X} deduced from \mathscr{S} by λ . To say that \mathscr{T} is universal means that $S^* = \operatorname{Pic} \bar{X}$ and that $\chi([\mathscr{T}])$ is the identity on $\operatorname{Pic} \bar{X}$.

We will need the following fact:

Lemma 5. Let T and X be as in proposition 3, and let $p: \mathscr{T} \to X$ be a universal torsor on X. Then there exists a point $z \in T(k)$ such that the class $[\mathscr{T} \times_X \operatorname{Spec} k_z] \in H^1(k, S)$ of the fiber of \mathscr{T} over z is trivial, i.e. \mathscr{T} has a k-point over z.

Proof. Let $\alpha = [\mathscr{T} \times_X \operatorname{Spec} k_o] \in H^1(k, S)$ be the class of the fiber of \mathscr{T} over the origin $o \in T(k)$. Let \mathscr{T}^o be the torsor defined by $[\mathscr{T}^o] = [\mathscr{T}] - \alpha$: then \mathscr{T}^o is the universal torsor that is trivial¹ above o, and, from the discussion in [1], III (see also [2], 2.4.4), the map $T(k) \to H^1(k, S), \ z \mapsto [\mathscr{T}^o \times_X \operatorname{Spec} k_z]$ is surjective. In particular, there exists z such that $[\mathscr{T}^o \times_X \operatorname{Spec} k_z] = -\alpha$, so $[\mathscr{T} \times_X \operatorname{Spec} k_z] - \alpha = -\alpha$, which proves that $[\mathscr{T} \times_X \operatorname{Spec} k_z]$ is nil, what we wanted.

¹In fact, if the torsor \mathcal{T} is that which we shall construct in the appendix, it is easy to see that it is already the universal torsor trivial over o; however, we shall not use this fact, which only very slightly simplifies the proof.

Now apply lemma 5 to the universal torsor \mathscr{T} given by proposition 4: we see that there exists $z' \in T(k)$ such that the fiber of \mathscr{T} over z' is trivial. Apply now the same lemma to the universal torsor \mathscr{T}^x with trivial fiber over x (in other words the torsor given by $[\mathscr{T}^x] = [\mathscr{T}] - [\mathscr{T} \times_X \operatorname{Spec} k_x]$): so there exists $z \in T(k)$ such that the fiber of \mathscr{T}^x over z is trivial. Let $\tau_{z'-z} \colon X \to X$ be the translation by z' - z: the torsor $\tau^*_{z'-z}\mathscr{T}$ is still universal (since $\tau_{z'-z}$ acts trivially on $\operatorname{Pic} \overline{X}$) and it is trivial over z—therefore it is isomorphic to \mathscr{T}^x (which has the same property).

Let $x' = \tau_{z'-z}(x)$ and $y' = \tau_{z'-z}(y)$. Since $\mathscr{T}^x \cong \tau_{z'-z}^*\mathscr{T}$ is trivial over x, it follows that \mathscr{T} is trivial over x'. But, since y is rationally equivalent to x by [1], II.B, proposition 1, \mathscr{T}^x is also trivial over y, and therefore so is \mathscr{T} over y'. So there exist points P and Q of $\mathscr{T}(k)$ over x' and y' respectively, and proposition 4 shows that P and Q live inside an open set of an affine space \mathbb{A} over k.

Finally, using the general facts laid out in proposition 1 (1–4), we have $P \stackrel{\mathbb{A}}{\leftrightarrow} Q$ (use facts 1–2) so $P \stackrel{\mathscr{T}}{\leftrightarrow} Q$ (fact 1 again) and therefore $x' \stackrel{X}{\leftrightarrow} y'$ (fact 3: compose with p) so $x \stackrel{X}{\leftrightarrow} y$ (compose with $\tau_{z-z'}$) which gives the desired conclusion (from fact 4).

3 Del Pezzo surfaces of degree 5

We now turn to the case where X is a del Pezzo surface of degree 5 over k. Then it is known that there is a unique universal torsor $p: \mathscr{T} \to X$ on X ("unique" up to non-unique isomorphism), trivial over every point, and that it is an open set of the Grassmanian variety $\operatorname{Gr}(2,5)$ of lines in \mathbb{P}^4 (Skorobogatov, [11], theorem 3.1.4).

If now x and y are two arbitrary k-rational points on X, pick k-rational points in $p^{-1}(x)$ and $p^{-1}(y)$ (which exist because \mathscr{T} is trivial over x and y), corresponding to two lines Δ and Λ in \mathbb{P}^4 . Now let Π and Π' be two hyperplanes in \mathbb{P}^4 neither of which contains either Δ or Λ and such that the intersection points P, P' of Π, Π' with Δ are distinct and similarly for the intersection points Q, Q' of Π, Π' with Λ . Then we have a rational map $\Pi \times \Pi' \dashrightarrow \mathscr{T} \to \mathscr{T} \to X$ taking a point on Π and one on Π' to the line they define (in general) and then to the image point by p in X. Again by the general facts laid out in proposition 1, since $(P, P') \stackrel{\Pi \times \Pi'}{\leftrightarrow} (Q, Q')$, we get $x \stackrel{X}{\leftrightarrow} y$ and consequently x and y are R-equivalent by a single very free rational curve. Thus, we have shown:

Proposition 6. Let X be a del Pezzo surface of degree 5 over an infinite field k; then given any two k-rational points x, y of X, there exists $f: \mathbb{P}^1_k \to X$ such that f(0) = x and $f(\infty) = y$ with, further, f^*T_X ample.

Appendix: Explicit construction of a universal torsor over a toric variety

Proposition 4 remains to be settled. A proof can be found in [10] (proposition 8.5), but the one we give below, for the reader's convenience, seems much more straightforward.

Historical remark: The construction described here was introduced in [5] and [4]. Here we give a presentation similar to the one contained in [9], although universality of the torsor is not shown there.

Let $T^* = \operatorname{Hom}_{\bar{k}}(\bar{T}, \bar{\mathbb{G}}_m)$ be the lattice of characters of the torus T, and $T_* = \operatorname{Hom}_{\bar{k}}(\bar{\mathbb{G}}_m, \bar{T})$ the lattice, dual to the former, of cocharacters. One and the other are endowed with an action of the Galois group $\Gamma = \operatorname{Gal}(\bar{k}/k)$. We write $T^*_{\mathbb{R}} = T^* \otimes_{\mathbb{Z}} \mathbb{R}$ for the real vector space in which T^* lives, and $T_{*\mathbb{R}} = T_* \otimes_{\mathbb{Z}} \mathbb{R}$ for the real vector space, dual to the former, in which T_* lives. The general theory of toric varieties (cf. [6], in particular §2.3) allows us to describe X by means of a fan Σ of strongly convex rational polyhedral cones in $T_{*\mathbb{R}}$. The fact that X is smooth means (cf. [6], §2.1) that every cone $\sigma \in \Sigma$ is spanned by part of a basis of T_* , determined uniquely by σ : call B_{σ} the part in question, and let $P = \bigcup_{\sigma \in \Sigma} B_{\sigma}$ be the union of the B_{σ} for all $\sigma \in \Sigma$. Then P is a finite part of T_* which spans the latter and is stable under the action of Γ . For every $\sigma \in \Sigma$, we have $B_{\sigma} = \sigma \cap P$, and σ is spanned by $\sigma \cap P$.

Now let V_* be the (free) lattice with basis P (with the obvious action of Γ making it a permutation lattice), and V^* the dual lattice, and $V_{*\mathbb{R}}$ and $V_{\mathbb{R}}^*$ the real vector spaces in which they respectively live. We call Vthe dual torus to V^* (i.e. the torus of which V^* is the character lattice), so $\bar{V} = \operatorname{Spec} \bar{k}[z^u : u \in V^*]$: since V^* is a permutation lattice, V is a quasi-trivial torus. And let \mathbf{A} be the affine space defined by the cone of $V_{*\mathbb{R}}$ spanned by the elements of P. Since P spans T_* , we have a surjective morphism $V_* \to T_*$ and thus an injection $T^* \to V^*$. From the description in [6], §3.3, the lattice V^* is precisely the group $\operatorname{Div}_{\bar{X}\setminus\bar{T}}\bar{X}$ of \bar{T} -invariant divisors of \bar{X} , by the arrow which sends a $u \in V^*$ to $\sum_{p\in P} u(p)D_p$ (where D_p is the closure of the orbit of \bar{T} acting on \bar{X} associated to the ray spanned by p in $V_{*\mathbb{R}}$). With this identification, $T^* \to V^*$ sends a $u \in T^*$ to the principal divisor $\operatorname{div}(t^u)$, and its cokernel ([6], §3.4) is the Picard group of \bar{X} , which is itself a lattice, say S^* , dual to a torus S. We therefore have the short exact sequence of lattices $0 \to T^* \to V^* \to S^* \to 0$, equal to $0 \to \bar{k}[\bar{T}]^{\times}/\bar{k}^{\times} \to \operatorname{Div}_{\bar{X}\setminus\bar{T}}\bar{X} \to \operatorname{Pic}\bar{X} \to 0$, and the dual short exact sequence of tori $1 \to S \to V \to T \to 1$.

For every cone $\sigma \in \Sigma$, let $\sigma^{\vee} = \{u \in T^*_{\mathbb{R}} : (\forall v \in \sigma)(\langle u, v \rangle \geq 0)\}$ denote the dual cone, and let $\bar{X}(\sigma) = \operatorname{Spec} \bar{k}[t^u : u \in T^* \cap \sigma^{\vee}]$ be the spectrum of the semigroup algebra of $T^* \cap \sigma^{\vee}$: thus, \bar{X} is obtained precisely by gluing the $\bar{X}(\sigma)$ for $\sigma \in \Sigma$ (identifying the open set $\bar{X}(\sigma \cap \sigma')$ in $\bar{X}(\sigma)$ and $\bar{X}(\sigma')$). Similarly, given a cone $\sigma \in \Sigma$, which is, therefore, spanned by a finite set (called B_{σ}) of elements of P, we can consider the cone $\tilde{\sigma}$ in $V_{*\mathbb{R}}$ spanned by the same elements of P, and its dual $\tilde{\sigma}^{\vee}$, a cone in $V^*_{\mathbb{R}}$: let us call $\bar{A}(\sigma) =$ $\operatorname{Spec} \bar{k}[z^u : u \in V^* \cap \tilde{\sigma}^{\vee}]$ the spectrum of the corresponding semigroup algebra. Thus $\bar{A}(\sigma)$ is an open set in \bar{A} , containing \bar{V} . Furthermore, the inclusion $T^* \to V^*$, which manifestly sends $T^* \cap \sigma^{\vee}$ inside $V^* \cap \tilde{\sigma}^{\vee}$, defines a morphism $\bar{A}(\sigma) \to \bar{X}(\sigma)$.

To make the situation clearer, let us presently prove the following lemma (lemma 5.1 of [9]):

Lemma 7. Let $\delta \in S^*$ and let $\sigma \in \Sigma$. Then there exists a $u_{\delta} \in V^*$ (not necessarily unique) which maps to $\delta \in S^*$ (by the arrow $V^* \to S^*$ defined above) and such that $\langle u_{\delta}, p \rangle = 0$ for all $p \in B_{\sigma}$ (in other words $u_{\delta} \in V^* \cap \tilde{\sigma}^{\vee} \cap (-\tilde{\sigma}^{\vee})$).

Proof. The morphism $V^* \to S^*$ being surjective, there exists $v \in V^*$ which maps to $\delta \in S^*$. Since B_{σ} is a subset of a basis of T_* , there exists $\tilde{v} \in T^*$ such that $\langle \tilde{v}, p \rangle = \langle v, p \rangle$ for all $p \in B_{\sigma}$. We then take $u_{\delta} = v - \tilde{v}$.

A u_{δ} as given by the previous lemma defines a $z^{u_{\delta}} \in \bar{k}[z^u : u \in V^* \cap \tilde{\sigma}^{\vee}]$ which is invertible in this algebra, since $-u_{\delta}$ manifestly also belongs to $\tilde{\sigma}^{\vee}$. We deduce the following description:

Fact 8. $\bar{k}[z^u : u \in V^* \cap \tilde{\sigma}^{\vee}]$, seen as a module over $\bar{k}[t^u : u \in T^* \cap \sigma^{\vee}]$, is free and a basis is formed by invertible elements $z^{u_{\delta}}$, one for each δ in S^* ; the free sub-module of rank 1 corresponding to a δ in S^* is precisely the set of linear combinations of the z^u for those $u \in V^* \cap \tilde{\sigma}^{\vee}$ for which $u|_{S_*}$ (that is, the image of u by $V^* \to S^*$) is δ . This can also be expressed by saying that $\bar{k}[z^u : u \in V^* \cap \tilde{\sigma}^{\vee}]$ is graded by S^* as an algebra over $\bar{k}[t^u : u \in T^* \cap \sigma^{\vee}]$, each graded component containing an invertible element.

In particular, we see that if $\sigma' \subseteq \sigma$ in Σ , the tensor product of $k[z^u : u \in V^* \cap \tilde{\sigma}^{\vee}]$ with $\bar{k}[t^u : u \in T^* \cap \sigma'^{\vee}]$ over $\bar{k}[t^u : u \in T^* \cap \sigma^{\vee}]$ is $k[z^u : u \in V^* \cap \tilde{\sigma}'^{\vee}]$, which means that the inverse image by $\bar{\mathbf{A}}(\sigma) \to \bar{X}(\sigma)$ of $\bar{X}(\sigma')$ is $\bar{\mathbf{A}}(\sigma')$, and, more precisely, that the morphism $\bar{\mathbf{A}}(\sigma') \to \bar{X}(\sigma')$ is exactly the restriction of $\bar{\mathbf{A}}(\sigma) \to \bar{X}(\sigma)$ to $\bar{X}(\sigma')$. The union of the $\bar{\mathbf{A}}(\sigma)$ for $\sigma \in \Sigma$, which we call $\bar{\mathscr{T}}$, comes from a variety \mathscr{T} defined over k and open in \mathbf{A} , and by gluing we have a morphism $\mathscr{T} \to X$.

We also see that $\bar{k}[z^u : u \in V^* \cap \tilde{\sigma}^{\vee}]$ is faithfully flat over $\bar{k}[t^u : u \in T^* \cap \sigma^{\vee}]$. Thus, the morphism $\mathscr{T} \to X$ is faithfully flat. We get an action of V on \mathscr{T} because \mathscr{T} has been constructed as a toric variety (with cones $\tilde{\sigma} \subseteq V_{*\mathbb{R}}$); therefore, by restriction, we get an action of S on \mathscr{T} , which by construction leaves X invariant. To see that this gives us a torsor under S, it is enough to see that each $\bar{\mathbf{A}}(\sigma) \to \bar{X}(\sigma)$ is a torsor under \bar{S} . In other words, we must show that the morphism

$$\theta \colon \bar{S} \times \bar{\mathbf{A}}(\sigma) \to \bar{\mathbf{A}}(\sigma) \times_{\bar{X}(\sigma)} \bar{\mathbf{A}}(\sigma) , \ (s,a) \mapsto (s \cdot a, a)$$

is an isomorphism. But the (co)morphism of the associated algebras from which it comes is given by

$$\begin{aligned} \theta^* \colon \bar{k}[z^u : u \in V^* \cap \tilde{\sigma}^{\vee}] \otimes_{\bar{k}[t^u : u \in T^* \cap \sigma^{\vee}]} \bar{k}[z^u : u \in V^* \cap \tilde{\sigma}^{\vee}] \\ & \to \bar{k}[\chi^{\lambda} : \lambda \in S^*] \otimes_{\bar{k}} \bar{k}[z^u : u \in V^* \cap \tilde{\sigma}^{\vee}] \\ & z^u \otimes z^{u'} \mapsto \chi^{u|_{S_*}} \otimes z^{u+u'} \end{aligned}$$

To see that this is indeed an isomorphism, notice that according to fact 8, the left-hand side has a basis over $\bar{k}[t^u: u \in T^* \cap \sigma^{\vee}]$ formed by the $z^{u_{\delta}} \otimes z^{u_{\delta'}}$ with u_{δ} as given in lemma 7, and the right-hand side has a basis formed by the $\chi^{\lambda} \otimes z^{u_{\delta''}}$. And on these two bases, the homomorphism in question is represented by a diagonal matrix whose coefficients are $t^{u_{\delta}+u_{\delta'}-u_{\delta''}}$ (for $\delta'' = \delta + \delta'$ and $\lambda = \delta$), which are invertible in $\bar{k}[t^u: u \in T^* \cap \sigma^{\vee}]$.

It remains to see that this torsor $p \colon \mathscr{T} \to X$ is indeed universal.

If $\sigma \in \Sigma$, since $\bar{X}(\sigma)$ is smooth, it is abstractly isomorphic to $\bar{\mathbb{A}}^d \times \bar{\mathbb{G}}_m^{n-d}$ (where d, say, is the dimension of σ and n that of T). In particular we have $\operatorname{Pic} \bar{X}(\sigma) = 0$; and furthermore $\bar{k}[t^u : u \in T^* \cap \sigma^{\vee}]^{\times} = \{t^u : u \in t^u : u \in t^u\}$ $T^* \cap \sigma^{\vee} \cap (-\sigma^{\vee})$ }. The general exact sequence $0 \to \bar{k}[\bar{U}]^{\times}/\bar{k}^{\times} \to \operatorname{Div}_{\bar{X}\setminus\bar{U}}\bar{X} \to \operatorname{Pic}\bar{X} \to 0$ (cf. [2], (2.3.10)) when $\operatorname{Pic}\bar{U} = 0$ becomes, for $\bar{U} = \bar{X}(\sigma)$,

$$0 \to T^* \cap \sigma^{\vee} \cap (-\sigma^{\vee}) \to V^* \cap \tilde{\sigma}^{\vee} \cap (-\tilde{\sigma}^{\vee}) \to S^* \to 0$$

The dual short exact sequence of tori is $1 \to \bar{S} \to \bar{M}_{\sigma} \to \bar{R}_{\sigma} \to 1$, where \bar{R}_{σ} and \bar{M}_{σ} are quotients of \bar{T} and \bar{V} respectively. Furthermore, the quotient morphism $\bar{T} \to \bar{R}_{\sigma}$ extends to $\bar{X}(\sigma)$ (of which \bar{T} is an open set): precisely, the morphisms $\bar{T} \to \bar{X}(\sigma) \to \bar{R}_{\sigma}$ give, on the associated algebras,

$$\bar{k}[t^u: u \in T^* \cap \sigma^{\vee} \cap (-\sigma^{\vee})] \to \bar{k}[t^u: u \in T^* \cap \sigma^{\vee}] \to \bar{k}[t^u: u \in T^*]$$

By corollary 2.3.4 of [2], it is now sufficient to prove that $\bar{\mathbf{A}}(\sigma) \to \bar{X}(\sigma)$ is obtained as the pullback of $\bar{M}_{\sigma} \to \bar{R}_{\sigma}$ by the arrow $\bar{X}(\sigma) \to \bar{R}_{\sigma}$, moreover in a way compatible with the restrictions when $\sigma' \subseteq \sigma$. In other words, we are to determine (in a natural way) the fiber product $\bar{M}_{\sigma} \times_{\bar{R}_{\sigma}} \bar{X}(\sigma)$; this is the affine scheme whose algebra is the tensor product

$$\bar{k}[z^u: u \in V^* \cap \tilde{\sigma}^{\vee} \cap (-\tilde{\sigma}^{\vee})] \otimes_{\bar{k}[t^u: u \in T^* \cap \sigma^{\vee} \cap (-\sigma^{\vee})]} \bar{k}[t^u: u \in T^* \cap \sigma^{\vee}]$$

But (from fact 8) $\bar{k}[z^u : u \in V^* \cap \tilde{\sigma}^{\vee}]$ is free over $\bar{k}[t^u : u \in T^* \cap \sigma^{\vee}]$ with basis $\{z^{u_s}\}$ for $\delta \in S^*$; and for precisely the same reasons, $\bar{k}[z^u : u \in V^* \cap \tilde{\sigma}^{\vee} \cap (-\tilde{\sigma}^{\vee})]$ is free over $\bar{k}[t^u : u \in T^* \cap \sigma^{\vee} \cap (-\sigma^{\vee})]$ with the same basis. That is to say that the above tensor product is (by the natural map) $\bar{k}[z^u : u \in V^* \cap \tilde{\sigma}^{\vee}]$, in other words that $\bar{M}_{\sigma} \times_{\bar{R}_{\sigma}} \bar{X}(\sigma) = \bar{\mathbf{A}}(\sigma)$ (naturally).

This shows that the torsor $p: \mathscr{T} \to X$, obtained by gluing these different $\bar{\mathbf{A}}(\sigma) \to \bar{X}(\sigma)$, is indeed universal.

Acknowledgements: The author wishes to thank Jean-Louis Colliot-Thélène for his illuminating explanations on the universal torsor and its use, and Emmanuel Peyre for providing some of the references below and for inviting me to Grenoble to give a talk on this construction. I am also indebted to Laurent Moret-Bailly for showing me how to state clearly (and gather in a single place) the facts listed in proposition 1.

References

 J.-L. Colliot-Thélène & J.-J. Sansuc, "La descente sur les variétés rationnelles", in *Journées de géométrie algébrique d'Angers 1979*, ed. A. Beauville, Sijthoff & Noordhoff, Alphen aan den Rijn 1980, 223-237.

- [2] J.-L. Colliot-Thélène & J.-J. Sansuc, "La descente sur les variétés rationnelles II", Duke Math. Journal, 54 (1987), 375–492.
- [3] J.-L. Colliot-Thélène & A. N. Skorobogatov, "R-equivalence on Conic Bundles of Degree 4", Duke Math. Journal, 54 (1987), 671–677.
- [4] D. Cox, "The Homogeneous Coordinate Ring of a Toric Variety", J. Alg. Geom., 4 (1995), 17–50.
- [5] T. Delzant, "Hamiltoniens périodiques et images convexes de l'application moment", Bull. Soc. Math. France, **116** (1988), 315–339.
- [6] W. Fulton, Introduction to Toric Varieties, Princeton University Press.
- [7] J. Kollár, *Rational Curves on Algebraic Varieties*, Springer, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 32.
- [8] J. Kollár, "Specialization of zero-cycles", preprint, available on www.arxiv.org as math.AG/0205148.
- [9] A. S. Merkurjev & I. A. Panin, "K-theory of algebraic tori and toric varieties", K-theory, 12 (1997), no. 2, 101–143.
- [10] P. Salberger, "Tamagawa Measures on Universal Torsors and Points of Bounded Height on Fano Varieties", Nombre et répartition des points de hauteur bornée, Astérisque 251 (1998), 91–258.
- [11] A. Skorobogatov, Torsors and Rational Points, Cambridge Tracts in Mathematics (144).