Very free R-equivalence on toric models

David A. Madore*

15th April 2005

Abstract

Using the theory of the universal torsor, we prove that two rational points on a smooth projective toric variety over an infinite field that are rationally equivalent can in fact be connected by a very free rational curve. We also show a similar result over del Pezzo surfaces of degree 5 .

Introduction

Let X be a smooth projective variety over an infinite field k, and assume that X is (geometrically) separably rationally connected, meaning that, over the algebraic closure \bar{k}, there exists an $f: \mathbb{P}_{\bar{k}}^{1} \rightarrow X_{\bar{k}}$ which is "very free" in the sense that $f^{*} T_{X}$ is ample (in other words, $H^{1}\left(\mathbb{P}^{1},\left(f^{*} T_{X}\right)(-2)\right)=0$). If x and y are two k-rational points of X (assuming there are any) which are "Requivalent", that is, which can be joined by a chain of rational curves on X (each defined over k), we can ask ourselves whether there exists $f: \mathbb{P}_{k}^{1} \rightarrow X$ defined over k such that $f(0)=x$, and $f(\infty)=y$ and $H^{1}\left(\mathbb{P}^{1},\left(f^{*} T_{X}\right)(-2)\right)=$ 0 : if such is the case, we say that x and y are R-equivalent by a single very free rational curve.

It is true over k algebraically closed that any two points on a smooth projective separably rationally connected variety X are in fact joined by a single very free rational curve (see [7] for a proof of this fact as well as all introductory material on rationally connected varieties).

[^0]In the case where k is no longer algebraically closed but "large", meaning that every irreducible variety that has a smooth k-point has a Zariski dense subset of them, for example when k is a local field, then the answer is again affirmative: this is the result of a recent work by Kollár ([8], theorem 23)any two points (on a smooth projective rationally connected variety) which are R-equivalent are so by a single very free rational curve.

For other fields k, however, the answer to the question is unknown, even in some simple cases.

When X is a smooth del Pezzo surface of degree 4 over k, for example, it is known that every universal torsor over X (a term which we will define below) having a k-point is k-rational (see [3]), so two rationally equivalent points on X are R-equivalent, but it is not known whether they can be joined by a single very free rational curve. Perhaps more to the point, it can be shown, using the technique of the present paper, that, for every R-equivalence class α of $X(k)$, there is a nonempty Zariski open set U_{α} of X such that if P and Q are in α and in U_{α} then they are joined by a single very free rational curve - but it remains unknown whether, in fact, U_{α} can be taken to be X.

A positive answer to the question in full generality (for any infinite field k and any separably rationally connected variety X) is conceivable, but seems out of reach with present techniques.

In this article we prove a positive result when X is a toric model (i.e., a smooth equivariant compactification of a torus) over an infinite field k : this is possible because a universal torsor can be explicitly constructed, and because rational curves can be moved thanks to the action of the torus. In the next section, we also prove a positive result in the case where X is a del Pezzo surface of degree 5 (another case in which the universal torsor is well controlled). We start with some general remarks on very free R-equivalence.

1 General framework

We introduce a notation: if k is a field and X an irreducible variety over k, and if $x, y \in X(k)$, let $x \stackrel{X}{\leftrightarrow} y$ stand for the following statement: there exists an irreducible variety M over k such that $M(k)$ is Zariski-dense in M, and a dominant and separable rational map $F: M \times \mathbb{P}^{1} \rightarrow X$ such that F restricted to $M \times\{0\}$ is constant equal to x and F restricted to $M \times\{\infty\}$ is constant equal to y.

The following proposition summarizes some general facts about this relation:

Proposition 1. Assume k is a field and X is an irreducible variety over k. Then:

1. If $U \subseteq X$ is a Zariski open set and $x, y \in U(k)$ then $x \stackrel{X}{\leftrightarrow} y$ if and only if $x \stackrel{U}{\leftrightarrow} y$.
2. If $X=\mathbb{P}_{k}^{n}$ then $x \stackrel{X}{\leftrightarrow} y$ for any two x, y.
3. Suppose $p: Z \rightarrow X$ is a dominant and separable rational map with Z an irreducible variety over k : then, for any $x, y \in Z(k)$ at which p is defined, if $x \stackrel{Z}{\longleftrightarrow} y$ then $p(x) \stackrel{X}{\longleftrightarrow} p(y)$.
4. Suppose X is smooth projective: then, for any $x, y \in X(k)$, if $x \stackrel{X}{\leftrightarrow} y$ then x and y are R-equivalent by a single very free rational curve.

The first fact is trivial (restrict F to U on the range).
To prove the second, consider $x, y \in \mathbb{P}_{k}^{n}(k)$ and take the family of all smooth conics passing through x and y and parameterize them rationally: obviously we can find an open set M in some affine space over k (so certainly $M(k)$ is dense) and a dominant and separable morphism $F: M \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{n}$ which takes $M \times\{0\}$ to x and $M \times\{\infty\}$ to y.

The third statement is trivial: merely compose F with p.
To get the fourth, first notice that when X is projective we can by restricting M assume that F is a morphism; now apply the following geometric result (see, e.g., [7], II.3.10):

Proposition 2. Let \bar{k} be an algebraically closed field, M an irreducible variety over \bar{k}, and X a smooth projective variety over \bar{k}. Let $x \in X$. Finally, let $F: M \times \mathbb{P}^{1} \rightarrow X$ be a separable and dominant morphism such that $F(M \times\{0\})=\{x\}$. Then there exists a nonempty Zariski open set M^{0} of M such that for all $p \in M^{0}$ the morphism $F_{p}: \mathbb{P}^{1} \rightarrow X$ satisfies the condition that $F_{p}^{*} T_{X}$ be ample.
-and make use of the fact that M^{0} has a point over k by assumption.

2 R-equivalence on universal torsors

The goal of this section is to prove the following result:
Proposition 3. Let T be an algebraic torus over an infinite field k, and X a smooth equivariant compactification of T; then given two k-rational points x, y of X, if x and y are rationally equivalent, they are R-equivalent by a single very free rational curve.

To do this, we use the following result, whose proof will be given in the appendix:

Proposition 4. Let T be an algebraic torus on a field k, and X a smooth equivariant compactification of T; then there exists a torus S over k, a"universal" S-torsor $p: \mathscr{T} \rightarrow X$, and an S-equivariant open embedding of \mathscr{T} in an affine space on which S acts linearly.
"Universal" is to be taken in the sense of [1], II.C (or [2], example 2.3.3), which we presently recall. Call $H^{1}(X, S)$ the étale cohomology group classifying S-torsors on X, and [$\mathscr{T}]$ the class of p in it. Define a map $\chi: H^{1}(X, S) \rightarrow$ $\operatorname{Hom}_{\operatorname{Gal}(\bar{k} / k)}\left(S^{*}, \operatorname{Pic} \bar{X}\right)$ which sends the class of an S-torsor on X, say \mathscr{S}, and a character $\lambda_{-} \in S^{*}=\operatorname{Hom}\left(\bar{S}, \overline{\mathbb{G}}_{m}\right)$ to the class of the $\overline{\mathbb{G}}_{m}$-torsor on \bar{X} deduced from $\overline{\mathscr{S}}$ by λ. To say that \mathscr{T} is universal means that $S^{*}=\operatorname{Pic} \bar{X}$ and that $\chi([\mathscr{T}])$ is the identity on $\operatorname{Pic} \bar{X}$.

We will need the following fact:
Lemma 5. Let T and X be as in proposition 3, and let $p: \mathscr{T} \rightarrow X$ be a universal torsor on X. Then there exists a point $z \in T(k)$ such that the class $\left[\mathscr{T} \times_{X} \operatorname{Spec} k_{z}\right] \in H^{1}(k, S)$ of the fiber of \mathscr{T} over z is trivial, i.e. \mathscr{T} has a k-point over z.

Proof. Let $\alpha=\left[\mathscr{T} \times{ }_{X}\right.$ Spec $\left.k_{o}\right] \in H^{1}(k, S)$ be the class of the fiber of \mathscr{T} over the origin $o \in T(k)$. Let \mathscr{T}^{o} be the torsor defined by $\left[\mathscr{T}^{o}\right]=[\mathscr{T}]-\alpha$: then \mathscr{T}^{o} is the universal torsor that is trivial ${ }^{1}$ above o, and, from the discussion in [1], III (see also [2], 2.4.4), the map $T(k) \rightarrow H^{1}(k, S), z \mapsto\left[\mathscr{T}^{o} \times_{X} \operatorname{Spec} k_{z}\right]$ is surjective. In particular, there exists z such that $\left[\mathscr{T}^{o} \times_{X} \operatorname{Spec} k_{z}\right]=-\alpha$, so $\left[\mathscr{T} \times{ }_{X} \operatorname{Spec} k_{z}\right]-\alpha=-\alpha$, which proves that $\left[\mathscr{T} \times_{X} \operatorname{Spec} k_{z}\right]$ is nil, what we wanted.

[^1]Now apply lemma 5 to the universal torsor \mathscr{T} given by proposition 4 : we see that there exists $z^{\prime} \in T(k)$ such that the fiber of \mathscr{T} over z^{\prime} is trivial. Apply now the same lemma to the universal torsor \mathscr{T}^{x} with trivial fiber over x (in other words the torsor given by $\left[\mathscr{T}^{x}\right]=[\mathscr{T}]-\left[\mathscr{T} \times{ }_{X} \operatorname{Spec} k_{x}\right]$): so there exists $z \in T(k)$ such that the fiber of \mathscr{T}^{x} over z is trivial. Let $\tau_{z^{\prime}-z}: X \rightarrow X$ be the translation by $z^{\prime}-z$: the torsor $\tau_{z^{\prime}-z}^{*} \mathscr{T}$ is still universal (since $\tau_{z^{\prime}-z}$ acts trivially on $\operatorname{Pic} \bar{X}$) and it is trivial over z-therefore it is isomorphic to \mathscr{T}^{x} (which has the same property).

Let $x^{\prime}=\tau_{z^{\prime}-z}(x)$ and $y^{\prime}=\tau_{z^{\prime}-z}(y)$. Since $\mathscr{T}^{x} \cong \tau_{z^{\prime}-z}^{*} \mathscr{T}$ is trivial over x, it follows that \mathscr{T} is trivial over x^{\prime}. But, since y is rationally equivalent to x by [1], II.B, proposition $1, \mathscr{T}^{x}$ is also trivial over y, and therefore so is \mathscr{T} over y^{\prime}. So there exist points P and Q of $\mathscr{T}(k)$ over x^{\prime} and y^{\prime} respectively, and proposition 4 shows that P and Q live inside an open set of an affine space \mathbb{A} over k.

Finally, using the general facts laid out in proposition $1(1-4)$, we have $P \stackrel{\mathbb{A}}{\leftrightarrow} Q$ (use facts $1-2$) so $P \stackrel{\mathscr{T}}{\leftrightarrow} Q$ (fact 1 again) and therefore $x^{\prime} \stackrel{X}{\leftrightarrow} y^{\prime}$ (fact 3: compose with p) so $x \stackrel{X}{\longleftrightarrow} y$ (compose with $\tau_{z-z^{\prime}}$) which gives the desired conclusion (from fact 4).

3 Del Pezzo surfaces of degree 5

We now turn to the case where X is a del Pezzo surface of degree 5 over k. Then it is known that there is a unique universal torsor $p: \mathscr{T} \rightarrow X$ on X ("unique" up to non-unique isomorphism), trivial over every point, and that it is an open set of the Grassmanian variety $\operatorname{Gr}(2,5)$ of lines in \mathbb{P}^{4} (Skorobogatov, [11], theorem 3.1.4).

If now x and y are two arbitrary k-rational points on X, pick k-rational points in $p^{-1}(x)$ and $p^{-1}(y)$ (which exist because \mathscr{T} is trivial over x and y), corresponding to two lines Δ and Λ in \mathbb{P}^{4}. Now let Π and Π^{\prime} be two hyperplanes in \mathbb{P}^{4} neither of which contains either Δ or Λ and such that the intersection points P, P^{\prime} of Π, Π^{\prime} with Δ are distinct and similarly for the intersection points Q, Q^{\prime} of Π, Π^{\prime} with Λ. Then we have a rational map $\Pi \times \Pi^{\prime} \rightarrow \mathscr{T} \rightarrow X$ taking a point on Π and one on Π^{\prime} to the line they define (in general) and then to the image point by p in X. Again by the general facts laid out in proposition 1 , since $\left(P, P^{\prime}\right) \stackrel{\Pi \times \Pi^{\prime}}{\leftrightarrow}\left(Q, Q^{\prime}\right)$, we get $x \stackrel{X}{\leftrightarrow} y$ and consequently x and y are R-equivalent by a single very free rational curve.

Thus, we have shown:
Proposition 6. Let X be a del Pezzo surface of degree 5 over an infinite field k; then given any two k-rational points x, y of X, there exists $f: \mathbb{P}_{k}^{1} \rightarrow X$ such that $f(0)=x$ and $f(\infty)=y$ with, further, $f^{*} T_{X}$ ample.

Appendix: Explicit construction of a universal torsor over a toric variety

Proposition 4 remains to be settled. A proof can be found in [10] (proposition 8.5), but the one we give below, for the reader's convenience, seems much more straightforward.

Historical remark: The construction described here was introduced in [5] and [4]. Here we give a presentation similar to the one contained in [9], although universality of the torsor is not shown there.

Let $T^{*}=\operatorname{Hom}_{\bar{k}}\left(\bar{T}, \overline{\mathbb{G}}_{m}\right)$ be the lattice of characters of the torus T, and $T_{*}=\operatorname{Hom}_{\bar{k}}\left(\overline{\mathbb{G}}_{m}, \bar{T}\right)$ the lattice, dual to the former, of cocharacters. One and the other are endowed with an action of the Galois group $\Gamma=\operatorname{Gal}(\bar{k} / k)$. We write $T_{\mathbb{R}}^{*}=T^{*} \otimes_{\mathbb{Z}} \mathbb{R}$ for the real vector space in which T^{*} lives, and $T_{* \mathbb{R}}=T_{*} \otimes_{\mathbb{Z}} \mathbb{R}$ for the real vector space, dual to the former, in which T_{*} lives. The general theory of toric varieties (cf. [6], in particular §2.3) allows us to describe X by means of a fan Σ of strongly convex rational polyhedral cones in $T_{* \mathbb{R}}$. The fact that X is smooth means (cf. [6], §2.1) that every cone $\sigma \in \Sigma$ is spanned by part of a basis of T_{*}, determined uniquely by σ : call B_{σ} the part in question, and let $P=\bigcup_{\sigma \in \Sigma} B_{\sigma}$ be the union of the B_{σ} for all $\sigma \in \Sigma$. Then P is a finite part of T_{*} which spans the latter and is stable under the action of Γ. For every $\sigma \in \Sigma$, we have $B_{\sigma}=\sigma \cap P$, and σ is spanned by $\sigma \cap P$.

Now let V_{*} be the (free) lattice with basis P (with the obvious action of Γ making it a permutation lattice), and V^{*} the dual lattice, and $V_{* \mathbb{R}}$ and $V_{\mathbb{R}}^{*}$ the real vector spaces in which they respectively live. We call V the dual torus to V^{*} (i.e. the torus of which V^{*} is the character lattice), so $\bar{V}=\operatorname{Spec} \bar{k}\left[z^{u}: u \in V^{*}\right]:$ since V^{*} is a permutation lattice, V is a quasi-trivial torus. And let A be the affine space defined by the cone of $V_{* \mathbb{R}}$ spanned by the elements of P. Since P spans T_{*}, we have a surjective morphism $V_{*} \rightarrow T_{*}$ and thus an injection $T^{*} \rightarrow V^{*}$.

From the description in [6], §3.3, the lattice V^{*} is precisely the group $\operatorname{Div}_{\bar{X} \backslash \bar{T}} \bar{X}$ of \bar{T}-invariant divisors of \bar{X}, by the arrow which sends a $u \in V^{*}$ to $\sum_{p \in P} u(p) D_{p}$ (where D_{p} is the closure of the orbit of \bar{T} acting on \bar{X} associated to the ray spanned by p in $V_{* \mathbb{R}}$). With this identification, $T^{*} \rightarrow V^{*}$ sends a $u \in T^{*}$ to the principal divisor $\operatorname{div}\left(t^{u}\right)$, and its cokernel ([6], §3.4) is the Picard group of \bar{X}, which is itself a lattice, say S^{*}, dual to a torus S. We therefore have the short exact sequence of lattices $0 \rightarrow T^{*} \rightarrow V^{*} \rightarrow S^{*} \rightarrow 0$, equal to $0 \rightarrow \bar{k}[\bar{T}]^{\times} / \bar{k}^{\times} \rightarrow \operatorname{Div}_{\bar{X} \backslash \bar{T}} \bar{X} \rightarrow \operatorname{Pic} \bar{X} \rightarrow 0$, and the dual short exact sequence of tori $1 \rightarrow S \rightarrow V \rightarrow T \rightarrow 1$.

For every cone $\sigma \in \Sigma$, let $\sigma^{\vee}=\left\{u \in T_{\mathbb{R}}^{*}:(\forall v \in \sigma)(\langle u, v\rangle \geq 0)\right\}$ denote the dual cone, and let $\bar{X}(\sigma)=\operatorname{Spec} \bar{k}\left[t^{u}: u \in T^{*} \cap \sigma^{\vee}\right]$ be the spectrum of the semigroup algebra of $T^{*} \cap \sigma^{\vee}$: thus, \bar{X} is obtained precisely by gluing the $\bar{X}(\sigma)$ for $\sigma \in \Sigma$ (identifying the open set $\bar{X}\left(\sigma \cap \sigma^{\prime}\right)$ in $\bar{X}(\sigma)$ and $\left.\bar{X}\left(\sigma^{\prime}\right)\right)$. Similarly, given a cone $\sigma \in \Sigma$, which is, therefore, spanned by a finite set (called B_{σ}) of elements of P, we can consider the cone $\tilde{\sigma}$ in $V_{* \mathbb{R}}$ spanned by the same elements of P, and its dual $\tilde{\sigma}^{\vee}$, a cone in $V_{\mathbb{R}}^{*}$: let us call $\overline{\mathbf{A}}(\sigma)=$ Spec $\bar{k}\left[z^{u}: u \in V^{*} \cap \tilde{\sigma}^{\vee}\right]$ the spectrum of the corresponding semigroup algebra. Thus $\overline{\mathbf{A}}(\sigma)$ is an open set in $\overline{\mathbf{A}}$, containing \bar{V}. Furthermore, the inclusion $T^{*} \rightarrow V^{*}$, which manifestly sends $T^{*} \cap \sigma^{\vee}$ inside $V^{*} \cap \tilde{\sigma}^{\vee}$, defines a morphism $\overline{\mathbf{A}}(\sigma) \rightarrow \bar{X}(\sigma)$.

To make the situation clearer, let us presently prove the following lemma (lemma 5.1 of [9]):

Lemma 7. Let $\delta \in S^{*}$ and let $\sigma \in \Sigma$. Then there exists a $u_{\delta} \in V^{*}$ (not necessarily unique) which maps to $\delta \in S^{*}$ (by the arrow $V^{*} \rightarrow S^{*}$ defined above) and such that $\left\langle u_{\delta}, p\right\rangle=0$ for all $p \in B_{\sigma}$ (in other words $u_{\delta} \in V^{*} \cap$ $\left.\tilde{\sigma}^{\vee} \cap\left(-\tilde{\sigma}^{\vee}\right)\right)$.

Proof. The morphism $V^{*} \rightarrow S^{*}$ being surjective, there exists $v \in V^{*}$ which maps to $\delta \in S^{*}$. Since B_{σ} is a subset of a basis of T_{*}, there exists $\tilde{v} \in T^{*}$ such that $\langle\tilde{v}, p\rangle=\langle v, p\rangle$ for all $p \in B_{\sigma}$. We then take $u_{\delta}=v-\tilde{v}$.

A u_{δ} as given by the previous lemma defines a $z^{u_{\delta}} \in \bar{k}\left[z^{u}: u \in V^{*} \cap \tilde{\sigma}^{\vee}\right]$ which is invertible in this algebra, since $-u_{\delta}$ manifestly also belongs to $\tilde{\sigma}^{\vee}$. We deduce the following description:
Fact 8. $\bar{k}\left[z^{u}: u \in V^{*} \cap \tilde{\sigma}^{\vee}\right]$, seen as a module over $\bar{k}\left[t^{u}: u \in T^{*} \cap \sigma^{\vee}\right]$, is free and a basis is formed by invertible elements $z^{u_{\delta}}$, one for each δ in S^{*}; the free sub-module of rank 1 corresponding to $a \delta$ in S^{*} is precisely the set of linear combinations of the z^{u} for those $u \in V^{*} \cap \tilde{\sigma}^{\vee}$ for which $\left.u\right|_{S_{*}}$ (that is,
the image of u by $V^{*} \rightarrow S^{*}$) is δ. This can also be expressed by saying that $\bar{k}\left[z^{u}: u \in V^{*} \cap \tilde{\sigma}^{\vee}\right]$ is graded by S^{*} as an algebra over $\bar{k}\left[t^{u}: u \in T^{*} \cap \sigma^{\vee}\right]$, each graded component containing an invertible element.

In particular, we see that if $\sigma^{\prime} \subseteq \sigma$ in Σ, the tensor product of $k\left[z^{u}: u \in\right.$ $\left.V^{*} \cap \tilde{\sigma}^{\vee}\right]$ with $\bar{k}\left[t^{u}: u \in T^{*} \cap \sigma^{\prime \vee}\right]$ over $\bar{k}\left[t^{u}: u \in T^{*} \cap \sigma^{\vee}\right]$ is $k\left[z^{u}: u \in V^{*} \cap \tilde{\sigma}^{\prime \vee}\right]$, which means that the inverse image by $\overline{\mathbf{A}}(\sigma) \rightarrow \bar{X}(\sigma)$ of $\bar{X}\left(\sigma^{\prime}\right)$ is $\overline{\mathbf{A}}\left(\sigma^{\prime}\right)$, and, more precisely, that the morphism $\overline{\mathbf{A}}\left(\sigma^{\prime}\right) \rightarrow \bar{X}\left(\sigma^{\prime}\right)$ is exactly the restriction of $\overline{\mathbf{A}}(\sigma) \rightarrow \bar{X}(\sigma)$ to $\bar{X}\left(\sigma^{\prime}\right)$. The union of the $\overline{\mathbf{A}}(\sigma)$ for $\sigma \in \Sigma$, which we call $\overline{\mathscr{T}}$, comes from a variety \mathscr{T} defined over k and open in \mathbf{A}, and by gluing we have a morphism $\mathscr{T} \rightarrow X$.

We also see that $\bar{k}\left[z^{u}: u \in V^{*} \cap \tilde{\sigma}^{\vee}\right]$ is faithfully flat over $\bar{k}\left[t^{u}: u \in T^{*} \cap \sigma^{\vee}\right]$. Thus, the morphism $\mathscr{T} \rightarrow X$ is faithfully flat. We get an action of V on \mathscr{T} because \mathscr{T} has been constructed as a toric variety (with cones $\tilde{\sigma} \subseteq V_{* \mathbb{R}}$); therefore, by restriction, we get an action of S on \mathscr{T}, which by construction leaves X invariant. To see that this gives us a torsor under S, it is enough to see that each $\overline{\mathbf{A}}(\sigma) \rightarrow \bar{X}(\sigma)$ is a torsor under \bar{S}. In other words, we must show that the morphism

$$
\theta: \bar{S} \times \overline{\mathbf{A}}(\sigma) \rightarrow \overline{\mathbf{A}}(\sigma) \times_{\bar{X}(\sigma)} \overline{\mathbf{A}}(\sigma), \quad(s, a) \mapsto(s \cdot a, a)
$$

is an isomorphism. But the (co)morphism of the associated algebras from which it comes is given by

$$
\begin{aligned}
& \theta^{*}: \bar{k}\left[z^{u}: u \in V^{*} \cap \tilde{\sigma}^{\vee}\right] \otimes_{\bar{k}\left[t^{u}: u \in T^{*} \cap \sigma^{\vee}\right]} \bar{k}\left[z^{u}: u \in V^{*} \cap \tilde{\sigma}^{\vee}\right] \\
& \rightarrow \bar{k}\left[\chi^{\lambda}: \lambda \in S^{*}\right] \otimes_{\bar{k}} \bar{k}\left[z^{u}: u \in V^{*} \cap \tilde{\sigma}^{\vee}\right] \\
& z^{u} \otimes z^{u^{\prime}} \mapsto \chi^{u \mid S_{S_{*}}} \otimes z^{u+u^{\prime}}
\end{aligned}
$$

To see that this is indeed an isomorphism, notice that according to fact 8 , the left-hand side has a basis over $\bar{k}\left[t^{u}: u \in T^{*} \cap \sigma^{\vee}\right]$ formed by the $z^{u_{\delta}} \otimes z^{u_{\delta^{\prime}}}$ with u_{δ} as given in lemma 7, and the right-hand side has a basis formed by the $\chi^{\lambda} \otimes z^{u_{\delta^{\prime \prime}}}$. And on these two bases, the homomorphism in question is represented by a diagonal matrix whose coefficients are $t^{u_{\delta}+u_{\delta^{\prime}}-u_{\delta^{\prime \prime}}}$ (for $\delta^{\prime \prime}=\delta+\delta^{\prime}$ and $\lambda=\delta$), which are invertible in $\bar{k}\left[t^{u}: u \in T^{*} \cap \sigma^{\vee}\right]$.

It remains to see that this torsor $p: \mathscr{T} \rightarrow X$ is indeed universal.
If $\sigma \in \Sigma$, since $\bar{X}(\sigma)$ is smooth, it is abstractly isomorphic to $\overline{\mathbb{A}}^{d} \times \overline{\mathbb{G}}_{m}^{n-d}$ (where d, say, is the dimension of σ and n that of T). In particular we have $\operatorname{Pic} \bar{X}(\sigma)=0$; and furthermore $\bar{k}\left[t^{u}: u \in T^{*} \cap \sigma^{\vee}\right]^{\times}=\left\{t^{u}: u \in\right.$
$\left.T^{*} \cap \sigma^{\vee} \cap\left(-\sigma^{\vee}\right)\right\}$. The general exact sequence $0 \rightarrow \bar{k}[\bar{U}]^{\times} / \bar{k}^{\times} \rightarrow \operatorname{Div}_{\bar{X} \backslash \bar{U}} \bar{X} \rightarrow$ $\operatorname{Pic} \bar{X} \rightarrow 0$ (cf. [2], (2.3.10)) when $\operatorname{Pic} \bar{U}=0$ becomes, for $\bar{U}=\bar{X}(\sigma)$,

$$
0 \rightarrow T^{*} \cap \sigma^{\vee} \cap\left(-\sigma^{\vee}\right) \rightarrow V^{*} \cap \tilde{\sigma}^{\vee} \cap\left(-\tilde{\sigma}^{\vee}\right) \rightarrow S^{*} \rightarrow 0
$$

The dual short exact sequence of tori is $1 \rightarrow \bar{S} \rightarrow \bar{M}_{\sigma} \rightarrow \bar{R}_{\sigma} \rightarrow 1$, where \bar{R}_{σ} and \bar{M}_{σ} are quotients of \bar{T} and \bar{V} respectively. Furthermore, the quotient morphism $\bar{T} \rightarrow \bar{R}_{\sigma}$ extends to $\bar{X}(\sigma)$ (of which \bar{T} is an open set): precisely, the morphisms $\bar{T} \rightarrow \bar{X}(\sigma) \rightarrow \bar{R}_{\sigma}$ give, on the associated algebras,

$$
\bar{k}\left[t^{u}: u \in T^{*} \cap \sigma^{\vee} \cap\left(-\sigma^{\vee}\right)\right] \rightarrow \bar{k}\left[t^{u}: u \in T^{*} \cap \sigma^{\vee}\right] \rightarrow \bar{k}\left[t^{u}: u \in T^{*}\right]
$$

By corollary 2.3.4 of [2], it is now sufficient to prove that $\overline{\mathbf{A}}(\sigma) \rightarrow \bar{X}(\sigma)$ is obtained as the pullback of $\bar{M}_{\sigma} \rightarrow \bar{R}_{\sigma}$ by the arrow $\bar{X}(\sigma) \rightarrow \bar{R}_{\sigma}$, moreover in a way compatible with the restrictions when $\sigma^{\prime} \subseteq \sigma$. In other words, we are to determine (in a natural way) the fiber product $\bar{M}_{\sigma} \times_{\bar{R}_{\sigma}} \bar{X}(\sigma)$; this is the affine scheme whose algebra is the tensor product

$$
\bar{k}\left[z^{u}: u \in V^{*} \cap \tilde{\sigma}^{\vee} \cap\left(-\tilde{\sigma}^{\vee}\right)\right] \otimes_{\bar{k}\left[t t^{u}: u \in T^{*} \cap \sigma^{\vee} \cap\left(-\sigma^{\vee}\right)\right]} \bar{k}\left[t^{u}: u \in T^{*} \cap \sigma^{\vee}\right]
$$

But (from fact 8) $\bar{k}\left[z^{u}: u \in V^{*} \cap \tilde{\sigma}^{\vee}\right]$ is free over $\bar{k}\left[t^{u}: u \in T^{*} \cap \sigma^{\vee}\right]$ with basis $\left\{z^{u_{\delta}}\right\}$ for $\delta \in S^{*}$; and for precisely the same reasons, $\bar{k}\left[z^{u}: u \in\right.$ $\left.V^{*} \cap \tilde{\sigma}^{\vee} \cap\left(-\tilde{\sigma}^{\vee}\right)\right]$ is free over $\bar{k}\left[t^{u}: u \in T^{*} \cap \sigma^{\vee} \cap\left(-\sigma^{\vee}\right)\right]$ with the same basis. That is to say that the above tensor product is (by the natural map) $\bar{k}\left[z^{u}: u \in V^{*} \cap \tilde{\sigma}^{\vee}\right]$, in other words that $\bar{M}_{\sigma} \times_{\bar{R}_{\sigma}} \bar{X}(\sigma)=\overline{\mathbf{A}}(\sigma)$ (naturally).

This shows that the torsor $p: \mathscr{T} \rightarrow X$, obtained by gluing these different $\overline{\mathbf{A}}(\sigma) \rightarrow \bar{X}(\sigma)$, is indeed universal.

Acknowledgements: The author wishes to thank Jean-Louis Colliot-Thélène for his illuminating explanations on the universal torsor and its use, and Emmanuel Peyre for providing some of the references below and for inviting me to Grenoble to give a talk on this construction. I am also indebted to Laurent Moret-Bailly for showing me how to state clearly (and gather in a single place) the facts listed in proposition 1.

References

[1] J.-L. Colliot-Thélène \& J.-J. Sansuc, "La descente sur les variétés rationnelles", in Journées de géométrie algébrique d'Angers 1979, ed. A. Beauville, Sijthoff \& Noordhoff, Alphen aan den Rijn 1980, 223237.
[2] J.-L. Colliot-Thélène \& J.-J. Sansuc, "La descente sur les variétés rationnelles II", Duke Math. Journal, 54 (1987), 375-492.
[3] J.-L. Colliot-Thélène \& A. N. Skorobogatov, "R-equivalence on Conic Bundles of Degree 4", Duke Math. Journal, 54 (1987), 671-677.
[4] D. Cox, "The Homogeneous Coordinate Ring of a Toric Variety", J. Alg. Geom., 4 (1995), 17-50.
[5] T. Delzant, "Hamiltoniens périodiques et images convexes de l'application moment", Bull. Soc. Math. France, 116 (1988), 315-339.
[6] W. Fulton, Introduction to Toric Varieties, Princeton University Press.
[7] J. Kollár, Rational Curves on Algebraic Varieties, Springer, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 32.
[8] J. Kollár, "Specialization of zero-cycles", preprint, available on www.arxiv.org as math.AG/0205148.
[9] A. S. Merkurjev \& I. A. Panin, " K-theory of algebraic tori and toric varieties", K-theory, 12 (1997), no. 2, 101-143.
[10] P. Salberger, "Tamagawa Measures on Universal Torsors and Points of Bounded Height on Fano Varieties", Nombre et répartition des points de hauteur bornée, Astérisque 251 (1998), 91-258.
[11] A. Skorobogatov, Torsors and Rational Points, Cambridge Tracts in Mathematics (144).

[^0]: *Département de mathématiques et applications, Ecole normale supérieure, 45 rue d'Ulm, F75230 Paris cedex 05, France. Email address: david.madore@ens.fr

[^1]: ${ }^{1}$ In fact, if the torsor \mathscr{T} is that which we shall construct in the appendix, it is easy to see that it is already the universal torsor trivial over o; however, we shall not use this fact, which only very slightly simplifies the proof.

