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Preliminary version: the labels in this document are subject to change.
None of these results are mine. The purpose of this document is simply to collect

various pointers to the literature, grouping them by ordinals they are concerned with,
and order these ordinals by size.

1 Recursive ordinals
•1.0. 0 (zero). This is the smallest ordinal, and the only one that is neither successor
nor limit.

•1.1. 1 (one). This is the smallest successor ordinal.

•1.2. 2.

•1.3. 42 (cf. [Adams1981, chapter 27]).

•1.4. ω. This is the smallest limit ordinal, and the smallest infinite ordinal.

•1.5. ω + 1. This is the smallest infinite successor ordinal.

•1.6. ω2.

•1.7. ω2.

•1.8. ωω.

•1.9. ωωω .

•1.10. ε0 = ϕ(1, 0). This is the limit of ω, ωω, ωωω , . . ., smallest fixed point of ξ 7→ ωξ;
in general, α 7→ εα = ϕ(1, α) is defined as the function enumerating the fixed points of
ξ 7→ ωξ. This is the proof-theoretic ordinal of Peano arithmetic.

•1.11. ε1 = ϕ(1, 1).

•1.12. εω.
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•1.13. εε0 .

•1.14. ϕ(2, 0). This is the limit of ε0, εε0 , . . ., smallest fixed point of ξ 7→ εξ; in general,
α 7→ ϕ(γ+1, α) is defined as the function enumerating the fixed points of ξ 7→ ϕ(γ, ξ).

•1.15. ϕ(ω, 0). This is the smallest ordinal> ω closed under primitive recursive ordinal
functions ([Avigad2002, corollary 4.5]).

•1.16. The Feferman-Schütte ordinal Γ0 = ϕ(1, 0, 0) (also ψ(ΩΩ) for an appropriate
collapsing function ψ). This is the limit of ε0, ϕ(ε0, 0), ϕ(ϕ(ε0)), . . ., smallest fixed
point of ξ 7→ ϕ(ξ, 0). This is the proof-theoretic ordinal of ATR0.

•1.17. The Ackermann ordinal ϕ(1, 0, 0, 0) (also ψ(ΩΩ2
) for an appropriate collapsing

function ψ).

•1.18. The “small” Veblen ordinal (ψ(ΩΩω) for an appropriate collapsing function ψ).
This is the limit of ϕ(1, 0), ϕ(1, 0, 0), ϕ(1, 0, 0, 0), . . ., the range of the Veblen functions
with finitely many variables.

•1.19. The “large” Veblen ordinal (ψ(ΩΩΩ
) for an appropriate collapsing function ψ).

This is the range of the Veblen functions with up to that many variables.

•1.20. The Bachmann-Howard ordinal (ψ(εΩ+1) for an appropriate collapsing func-
tion ψ). This is the proof-theoretic ordinal of Kripke-Platek set theory (KP).

•1.21. The countable collapse of εΩω+1 (“Takeuti-Feferman-Buchholz ordinal”), which
is the proof-theoretic ordinal of Π1

1-comprehension + transfinite induction.

•1.22. The countable collapse of εI+1 where I is the first inaccessible (= Π1
0-indescribable)

cardinal. This is the proof-theoretic ordinal of Kripke-Platek set theory augmented by
the recursive inaccessibility of the class of ordinals (KPi), or, on the arithmetical side, of
∆1

2-comprehension + transfinite induction. See [JaegerPohlers1983]. (Compare •2.3.)

•1.23. The countable collapse of εM+1 where M is the first Mahlo cardinal. This is the
proof-theoretic ordinal of KPM. See [Rathjen1990]. (Compare •2.5.)

•1.24. The countable collapse of εK+1 where K is the first weakly compact (= Π1
1-

indescribable) cardinal. This is the proof-theoretic ordinal of KP+Π3-Ref. See [Rathjen1994].
(Compare •2.6.)

•1.25. The countable collapse of εΞ+1 where Ξ is the first Π2
0-indescribable cardi-

nal. This is the proof-theoretic ordinal of KP + Πω-Ref. See [Stegert2010, part I]
(in whose notation this ordinal would be called Ψ

εΞ+1

X where X = (ω+;P0; ε; ε; 0)).
(Compare •2.7.)

•1.26. The proof-theoretic ordinal of Stability: see [Stegert2010, part II] (in whose
notation this ordinal would be called Ψ

εΥ+1

X where X = (ω+;P0; ε; ε; 0)).
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2 Recursively large countable ordinals
•2.1. The Church-Kleene ordinal ωCK

1 : the smallest admissible ordinal > ω. This is
the smallest ordinal which is not the order type of a recursive (equivalently: hyperarith-
metic) well-ordering on ω. The ωCK

1 -recursive (resp. ωCK
1 -semi-recursive) subsets of ω

are exactly the ∆1
1 (=hyperarithmetic) (resp. Π1

1) subsets of ω, and they are also exactly
the subsets recursive (resp. semi-recursive) in E (or E#, CHECK THIS[this is stated
vaguely and without proof in [HinmanMoschovakis1971, §2, introductory remarks],
and also alluded to, but with an argument, in [Hinman1978, chapter VI, introductory re-
marks to §6 on p. 316]; but the essential argument should be Gandy’s selection theorem,
[Hinman1978, chapter VI, theorem 4.1 on p. 292 or its corollary 4.3 on p. 294]]).

•2.2. ωCK
ω : the smallest limit of admissibles. This ordinal is not admissible. This is the

smallest α such that Lα ∩P(ω) is a model of Π1
1-comprehension (cf. [Simpson2009,

theorem VII.1.8 on p. 246 and theorem VII.5.17 on p. 292 and notes to §VII.5 on
p. 293]).

•2.3. The smallest recursively inaccessible ordinal: this is the smallest ordinal which is
admissible and limit of admissibles. This is the smallest ordinal α such that Lα |= KPi,
or, on the arithmetical side, such that Lα ∩ P(ω) is a model of ∆1

2-comprehension
(cf. [Simpson2009, theorem VII.3.24 on p. 267 and theorem VII.5.17 on p. 292 and
errata1 to notes to §VII.5 on p. 293]). (Compare •1.22.)

This is the smallest ordinal ωE1
1 not the order type of a well-ordering recursive

in the Tugué functional E1 ([Hinman1978, chapter VIII, theorem 6.6 on p. 421]), or
equivalently, recursive in the hyperjump; and for this α the α-recursive (resp. α-semi-
recursive) subsets of ω are exactly the subsets recursive (resp. semi-recursive) in E1

([Hinman1978, chapter VIII, corollary 4.16 on p. 412]).
This is the smallest α such that Lα |= KP + Beta, where Beta asserts the exis-

tence of a transitive collapse for any well-founded relation, or equivalently, the smallest
admissible α such that any ordering which Lα thinks is a well-ordering is, indeed, a
well-ordering: see [Nadel1973, theorem 6.1 on p. 291] (compare [Harrison1968] for
the negative result concerning the ordinal ωCK

1 of •2.1; compare also [Gostanian1979]
and •2.9 for related facts).

•2.4. The smallest recursively hyperinaccessible ordinal: i.e., the smallest recursively
inaccessible which is a limit of recursively inaccessibles.

•2.5. The smallest recursively Mahlo ordinal: i.e., the smallest admissible ordinal α
such that for any α-recursive function f : α→ α there is an admissible β < α which is
closed under f . This is the smallest ordinal α such that Lα |= KPM. (Compare •1.23.)

This is the smallest ordinal not the order type of a well-ordering recursive in the
superjump ([AczelHinman1974] and [Harrington1974]); and for this α the α-recursive

1http://www.personal.psu.edu/t20/sosoa/typos.pdf
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(resp. α-semi-recursive) subsets of ω are exactly the subsets recursive in the superjump
(resp. semirecursive in the partial normalization of the superjump, [Harrington1974,
theorem 5 on p. 50]).

Also note concerning this ordinal: [RichterAczel1974, corollary 9.4(ii) on p. 348].

•2.6. The smallest Π3-reflecting (“recursively weakly compact”) ordinal. This can
also be described as the smallest “2-admissible” ordinal: see [RichterAczel1974, theo-
rem 1.16 on p. 312]. (Compare •1.24.)

Also the sup of the closure ordinals for Σ3 inductive operators: [RichterAczel1974,
theorem A on p. 303]. For this α the α-semi-recursive subsets of ω are exactly the
Σ3-inductively definable subsets of ω ([RichterAczel1974, theorem A on p. 303 and
theorem D on p. 304]; see also [Simpson1978, example 4.12 on p. 370]).

•2.7. The smallest (+1)-stable ordinal, i.e., the smallest α such that Lα �1 Lα+1. This
is the smallest Π1

0-reflecting (i.e., Πn-reflecting for every n ∈ ω) ordinal: [RichterAczel1974,
theorem 1.18 on p. 313 and 333].

(Compare •1.25.)

•2.8. The smallest (+)-stable ordinal, i.e., the smallest α such that Lα �1 Lα+ where
α+ is the smallest admissible ordinal > α. This is the smallest Π1

1-reflecting ordinal:
[RichterAczel1974, theorem 1.19 on p. 313 and 336]. Also the sup of the closure or-
dinals for Π1

1 inductive operators: [RichterAczel1974, theorem B on p. 303 or 10.7
on p. 355] and [Cenzer1974, theorem A on p. 222]. For this α the α-semi-recursive
subsets of ω are exactly the Π1

1-inductively definable subsets of ω ([RichterAczel1974,
theorem D on p. 304]; see also [Simpson1978, example 4.13 on p. 370]).

This is the smallest ordinal ωG#
1

1 not the order type of a well-ordering recursive in the
nondeterministic functional G#

1 defined by G#
1 (f) ≈ {f(0)}(ωf1 )+(f(1)); and for this α

the α-recursive (resp. α-semi-recursive) subsets of ω are exactly the subsets recursive
(resp. semi-recursive) in G#

1 ([Cenzer1974, theorem 7.4 on p. 238]).

•2.9. The smallest Σ1
1-reflecting ordinal. Also the sup of the closure ordinals for Σ1

1

inductive operators: [RichterAczel1974, theorem B on p. 303 or 10.7 on p. 355]. For
this α the α-semi-recursive subsets of ω are exactly the Σ1

1-inductively definable subsets
of ω ([RichterAczel1974, theorem D on p. 304]; see also [Simpson1978, example 4.14
on p. 370]).

That this ordinal is greater than that of •2.8: [Aanderaa1974, corollary 1 to theo-
rem 6 on p.213]; also see: [Simpson1978, theorem 6.5] and [GostanianHrbáček1979].

This is the smallest ordinal ωE#
1

1 not the order type of a well-ordering recursive in the
nondeterministic version E#

1 of the Tugué functional E1; and for this α the α-recursive
(resp. α-semi-recursive) subsets of ω are exactly the subsets recursive (resp. semi-
recursive) in E#

1 (combine [Aczel1970, theorem 1 on p. 313, theorem 2 on p. 318]
and [RichterAczel1974, theorem D on p. 304]).
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This is the smallest admissible αwhich is not Gandy, i.e., such that every α-recursive
linear ordering of α of which Lα+ thinks that it is a well-ordering (with α+ being
the next admissible) is, indeed, a well-ordering: see [Simpson1978, theorem 6.6 on
p. 377] and [Gostanian1979, theorem 3.3] (on the terminology “Gandy ordinal”, see
[AbramsonSacks1976]: in [Gostanian1979] the same ordinals are called “good”).

[FIND THIS: how stable is this ordinal?]

•2.10. The smallest (++)-stable ordinal, i.e., the smallest α such thatLα �1 Lα++ where
α+, α++ are the two smallest admissible ordinals > α. This is Σ1

1-reflecting and greater
than the ordinal of •2.9 ([Simpson1978, theorem 6.4 on p. 376] and proposition 3.1
below).

•2.11. The smallest inaccessibly-stable ordinal, i.e., the smallest α such that Lα �1 Lβ
where β is the smallest recursively inaccessible (cf. •2.3) ordinal > α.

•2.12. The smallest Mahlo-stable ordinal, i.e., the smallest α such that Lα �1 Lβ where
β is the smallest recursively Mahlo (cf. •2.5) ordinal > α.

•2.13. The smallest doubly (+1)-stable ordinal, i.e., the smallest α such that Lα �1

Lβ �1 Lβ+1 (cf. •2.7).

•2.14. The smallest stable ordinal under a nonprojectible ordinal, i.e., the smallest α
such that Lα �1 Lβ where β is the smallest nonprojectible (the ordinal of •2.15).

This is the smallest ordinal ωR
1 not the order type of a well-ordering recursive

in a certain type 3 functional R defined in [Harrington1975]; and for this α the α-
recursive subsets of ω are exactly the subsets recursive in R. (See also [John1986] and
[Simpson1978, example 4.10 on p. 369].)

•2.15. The smallest nonprojectible ordinal, i.e., the smallest β such that β is a limit of
β-stable ordinals (ordinals α such that Lα �1 Lβ (cf. •2.14); in other words, the small-
est β such that Lβ |= KPi+“the stable ordinals are unbounded”. This is the smallest
ordinal β such that Lβ |= KPω + Σ1-Sep (cf. [Barwise1975, chapter V, theorem 6.3 on
p. 175]), or such that Lβ ∩P(ω) is a model of Π1

2-comprehension (cf. [Simpson2009,
theorem VII.3.24 on p. 267 and theorem VII.5.17 on p. 292]).

In Jensen’s terminology ([Jensen1972]), this is the smallest ordinal β such that ρβ1 >
ω, and in fact the smallest β > ω such that ρβ1 = β: that is, the smallest ordinal β such
that every Σ1(Lβ) subset of ω is β-finite. Sometimes also called the smallest “strongly
admissible” (or “strongly Σ1-admissible”) ordinal.

•2.16. The smallest (weakly) Σ2-admissible ordinal. This is the smallest ordinal β such
that Lβ |= KPω + ∆2-Sep, or such that Lβ ∩P(ω) is a model of ∆1

3-comprehension
(cf. [Simpson2009, theorem VII.3.24 on p. 267 and theorem VII.5.17 on p. 292]).

In Jensen’s terminology ([Jensen1972]), this is the smallest ordinal β such that ηβ2 >
ω, and in fact the smallest β > ω such that ηβ2 = β: that is, the smallest ordinal β such
that every ∆2(Lβ) subset of ω is β-finite.
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In the terminology of [MarekSrebrny1973, appendix], this is the first ∆2-gap ordi-
nal.

•2.17. The ordinal of ramified analysis (often written β0). This is the smallest β such
that Lβ |=

∧
n Σn-Sep (the full separation scheme), or such that Lβ ∩P(ω) is a model

of full second-order analysis (second-order comprehension), and in fact Lβ |= ZFC−

(that is, ZFC minus the powerset axiom).
This starts the first gap in the constructible universe, and this gap is of length 1: see

[Putnam1963] and [MarekSrebrny1973, corollary 4.5 on p. 374].
Note that this ordinal is (+1)-stable (cf. •2.7) but not (+2)-stable: [MarekSrebrny1973,

corollary to theorem 6.14 on p. 384].

•2.18. The start of the first gap of length 2 in the constructible universe. If β is this
ordinal then β is the β-th gap ordinal ([MarekSrebrny1973, theorem 4.17 on p. 377]).

•2.19. The first ordinal β which starts a gap of length β in the constructible universe.

•2.20. The ordinal β = ωLα1 where α is ordinal of •2.21. Then by construction β starts
a gap of length α = β+ (the next admissible ordinal).

•2.21. The smallest ordinal α such that Lα |= KP+“ω1 exists”, i.e., the smallest ad-
missible α which is not locally countable, or equivalently, the smallest α such that
Lα |= KP+“P(ω) exists” (cf. proposition 3.2).

•2.22. The smallest ordinal α such that Lα |= ZFC−+“ω1 exists”, or equivalently such
that Lα |= ZFC−+“P(ω) exists” (cf. proposition 3.2). This is the start of the first third-
order gap ([MarekSrebrny1973, theorem 3.7 on p. 372]) in the constructible universe.

•2.23. The smallest uncountable ordinal ωLα1 in the smallest modelLα of ZFC, assuming
it exists (see •2.24). This ordinal is α-stable.

•2.24. The smallest ordinal α such that Lα |= ZFC (assuming it exists), i.e., the height
of the minimal model of ZFC.

•2.25. The smallest stable ordinal σ, i.e., the smallest σ such that Lσ �1 L, or equiv-
alently Lσ �1 Lω1 . The set Lσ is the set of all x which are Σ1-definable in L without
parameters ([Barwise1975, chapter V, corollary 7.9(i) on p. 182]).

This ordinal is projectible to ω (i.e., in Jensen’s terminology), ρσ1 = ω ([Barwise1975,
chapter V, theorem 7.10(i) on p. 183]).

This is the smallest ordinal δ1
2 which not the order type of a well-ordering ∆1

2 on ω;
and in fact, for this σ = δ1

2 , the σ-recursive (resp. σ-semi-recursive) subsets of ω are
exactly the ∆1

2 (resp. Σ1
2) subsets of ω ([Barwise1975, chapter V, theorem 8.2 on p. 189

and corollary 8.3 on p. 191]).
This is also the smallest Σ1

2-reflecting ordinal ([Richter1975]).
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Note: This document should probably not start listing large cardinals, because
(0) the fact that one implies the other nonwithstanding, this is about “ordinals”, not
“cardinals”, (1) they are already well covered elsewhere (see, e.g., [Kanamori1997])
and (2) we don’t want to start making assumptions, e.g., about whether ωL1 is or is not
equal to ω1, but without making such assumptions it is no longer possible to correctly
order definitions. Perhaps a median way would be to assume V = L for ordering, forget
about measurable cardinals and whatnot, and still include inaccessibles, Mahlo, weakly
compact, etc.

3 Various statements
Again, none of these statements is due to me, they are well-known facts for which I
couldn’t find a suitable published proof.

Proposition 3.1. If α is such that Lα �1 Lα++ (where α+, α++ are the two smallest
admissible ordinals > α) then α is Σ1

1-reflecting. (Stated in [Simpson1978, theorem 6.4
on p. 376].)

Proof. Assume Lα |= ∃U(ϕ(U)) where ϕ is a Π1
0 (=first-order) formula with constants

in Lα and the extra relation symbol U . We want to show that there exists β < α such
that Lβ |= ∃U(ϕ(U)).

Now by [RichterAczel1974, theorem 6.2 on p. 334] (applied to the negation of
∃U(ϕ(U))) we can find a Π1 formula ∀z(ψ(S, z)) (with the same constants as ϕ) such
that for any countable transitive set A containing these constants and any admissible
B 3 A we have B |= ∀z(θ(A, z)) iff A |= ∃U(ϕ(U)).

In particular, Lα+ |= ∀z(θ(Lα, z)). So Lα+ |= ∃A(trans(A) ∧ (A |= Θ + V=L) ∧
∀z(θ(A, z))), were Θ is a statement which translates the adequacy of A (see [Jech1978]
(13.9) and lemmas 13.2 and 13.3 p. 110–112, or [Jech2003], (13.12) and (13.13) p. 188).
So in turn Lα++ |= ∃C(trans(C) ∧ (C |= KP + V=L) ∧ (C |= ∃A(trans(A) ∧ (A |=
Θ + V=L) ∧ ∀z(θ(A, z))))). But this is a Σ1 formula with constants in Lα, so by the
assumption we have Lα |= the same thing. So there is C ∈ Lα transitive and containing
the constants of ϕ, and which is necessarily an Lγ (for γ < α) because C |= KP+V=L,
such that Lγ |= ∃A(trans(A)∧ (A |= Θ +V=L)∧∀z(θ(A, z))). So in turn there exists
A ∈ Lγ transitive, which is necessarily an Lβ (for β < γ) because A |= Θ+V=L, such
that Lγ |= ∀z(θ(Lβ, z)). So Lβ |= ∃U(ϕ(U)).

Proposition 3.2. The following holds in KP: if A ⊆ ω is constructible, then A ∈ Lγ for
some countable ordinal γ.

In particular, in KP + V = L, if there exists an uncountable ordinal δ, then P(ω)
exists and can be defined as {A ∈ Lδ : A ⊆ ω}.
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Proof. We have to verify that the usual proof (cf. [Devlin1984, chapter II, lemma 5.5
on p. 84] or [Jech1978, lemma 13.1 on p. 110] or [Jech2003, theorem 13.20 on p. 190])
works in KP.

Working in L, we can assume that V = L holds. Also, we can assume that ω exists
because if every set is finite the result is trivial.

Since A is constructible there is δ limit such that A ∈ Lδ. We can define ∆1-Skolem
functions forLδ inside KP, and because ω exists we can use induction (cf. [Barwise1975,
remarks following definition 9.1 on p. 38]) to construct the Skolem hull M of Lω ∪{A}
inside Lδ (or use [Devlin1984, chapter II, lemma 5.3 on p. 83]). Since M is extensional,
we can now use the Mostowski collapse π : M

∼→ N (cf. [Barwise1975, theorem 7.4
on p. 32]) to collapse M to a transitive set N , which is necessarily an Lγ . Now M is
countable by construction, so N = Lγ is also, so γ is. And we have π(A) = A so
A ∈ Lγ with γ countable, as asserted.
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