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2001-12-15:001
Let U be a ultrafilter onZ. Say that a subsetA of Z is green(for lack of a better name!) relative toU iff for

everyk ∈ A the translationA− k = {` ∈ Z : `+ k ∈ A} belongs toU . Evidently,∅ andZ are green (relative to any
ultrafilter onZ); in fact, it is easy to see that the green subsets ofZ (relative to a given ultrafilter onZ) are the open
sets of a certain topology (the “green topology”) onZ.

If U is principal, then green subsets ofZ are easy to describe: fora ∈ Z, let Ua be the set of all subsets of
Z containinga—then every subset ofZ is green relative toU0 (i.e. the green topology relative toU0 is the discrete
topology onZ), and, in general, green subsets ofZ relative toUa are arbitrary unions of sets of the form{k + an :
n ∈ N} (i.e. these sets,N-indexed arithmetic sequences of reasona, form a basis for the green topology relative to
Ua).

Say that a ultrafilterU onZ is fencediff for every elementV ∈ U there exists a green subset ofV belonging
to U . Note that this is the same as demanding that for everyV ∈ U containing0 there exist a green subset ofV
containing0 (indeed, forU = U0, both conditions are satisfied; forU = Ua with a 6= 0, neither condition is
satisifed, and forU a non principal ultrafilter, both conditions are easily seen to be equivalent). Thus, a principal
ultrafilterUa is fenced iffa = 0.

To say that a ultrafilterU is fenced is precisely the same as to say thatU is the set of unpointed neighborhoods
of 0 for the green topology relative toU .

Question: what about non principal ultrafilters? Are some of them fenced? Are all of them fenced? I have no
idea on how to approach the question.

2001-12-15:002
If X is a set and, for everyx ∈ X, we are given a filterVx onX which is coarser than the principal ultrafilter of

all subsets ofX containingx (in other words, every element ofVx containsx), then we can define a topology onX
by saying that a subsetA of X is open iff for everyx ∈ A we haveA ∈ Vx. Unfortunately, it isnot truein general
thatVx is the set of neighborhoods ofx for the topology in question. Stupid counterexample: letX = N, letVk be the
trivial filter {N} except whenk = 0 where it is the filter of allinfinite subsets ofN containing0; then any non-empty
subset ofN which is open for the topology defined by theVk must clearly beN itself, so the topology is indiscrete
(aka coarse), andV0 is not the set of neighborhoods of0...

Is there an easy criterion, or at least a useful sufficient condition, which enables one to conclude thatVx is indeed
the set of neighborhoods ofx for all x ∈ X? It seems that Steen and Seebach (Counterexamples in Topology) often
define topology on various spaces by describing their filters of neighborhoods: how can one be sure that these are
adequate (or should I say “fenced”?) in the above sense?

Note that the question in2001-12-15:001is to study the situation whereX = Z andVk is the translation byk of
a certain ultrafilterU onZ (or, more precisely, of the filter of all elements ofU containing0, which is the same as
the filter formed by adding0 to every element ofU ).

2001-12-15:003
A triviality: if G is a group of finite type (i.e. having a finite generating family) then each generating family has a

finite generating subfamily. (Proof: express each element of a finite generating family in terms of the given generating
family; then a finite number of elements of the latter will have been used, and they generateG.) In particular, ifF is a
free group with basisB, andF is of finite type, thenB is finite. (Proof:B generatesF (is this a tautology or simply a
well-known fact?), so by the above a finite subset ofB generatesF ; but then the other elements ofB can be expressed
in terms of these finite number of elements, and, sinceF is free, there are no other elements, soB is finite.)

Not a triviality: if G is a finitely presented group, then given any presentation ofG with a finite number of
generators, we can find a finite subset of the relations which form a presentation ofG. This is proved in Rotman,An
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Introduction to the Theory of Groups, lemma 11.84. In other words (using the above trivialities in the translation), the
kernel of a surjective morphism from a free group of finite type to a finitely presented group, is of finite type. It would
be tempting to combine the two facts and state that ifG is a finitely presented group, then givenany presentation
of G we can find a finite subset of the generators and a finite subset of the relations (dealing only with the selected
generators!) which form a presentation ofG: is this true? (I doubt it.)

Update 2003-12-06:indeed, the assertion in question is false, as Yves de Cornulier points out to me. Take
〈(xi)i∈N|x1 · x2

0 · x−1
1 = 1 , xi+1 · xi · x−1

i+1 = 1 for all i ≥ 1〉. Visibly this is a presentation of the cyclic group with
two elements (and the latter is certainly of finite presentation), but any finite sub-presentation gives an infinite group
(or the trivial group).

2001-12-15:004
If X is a, say, noetherian, scheme (over a baseS), andE a locally free coherent sheaf onX, then we have an

associated projective bundleP(E ) (see Hartshorne,Algebraic Geometry, §7, and EGA, II, §4). Further, we have a
“fundamental sheaf”OP(E )(1), which is a line bundle onP(E ). Essentially, it is a way of “transforming” an arbitrary
vector bundleE into a line bundle; in particular, ifL isalreadya line bundle, then the canonical projectionπ:P(L ) →
X is an isomorphism, andπ∗L is (canonically isomorphic to)OP(L )(1). (In particular,OP(E )(1) need not be ample!)

We can then transfer the terminology of line bundles to arbitrary vector bundles: say thatE is ample onX iff
OP(E )(1) is ample onP(E ), for example. It also makes sense to talk about very ample vector bundles (when there
exists an immersioni overS of P(E ) in P(F ) for F some vector bundle overS—sayS is the spectrum of a field for
simplicity—such thatOP(E )(1) = i∗(OP(F)(1))). Question: does a very ample vector bundle somehow determine an
immersion ofX itself in a projective space? (In particular, ifX is proper smooth over some field and has a very ample
vector bundle, is it true thatX is projective?)

This is very confused, and there are many questions floating around. EGA does things in “full generality” as
usual, of course, and Hartshorne in a much more restricted context, and it is not even completely obvious how far the
definitions coincide.

2001-12-15:005
Still concerning projective space (see also2001-12-15:004on this subject): ifk is any ring, andE anyk-module,

thenP(E) is (see EGA, II, theorem 4.2.4) the set of submodulesF of E such thatE/F is free of rank1 (2003-12-06:
no, this iswrong, it should read “locally free” or something; see2003-12-06:064). More precisely,P(E) is the functor
which takes ak-algebraA to the setP(E)(A) of submodulesF of E ⊗k A such that(E ⊗k A)/F is free of rank1
(as anA-module); and which takes a morphismA → B of k-algebras to the mapP(E)(A) → P(E)(B) which takes
F ⊆ E ⊗k A to the image ofF ⊗A B insideE ⊗k B. In particular,P1

k(A) is the set of submodulesF of A2 (the free
A-module of rank2) such thatA2/F is free of rank1 (andP1

k(A) → P1
k(B) takesF to the image ofF ⊗A B inside

B2); and the mapA1
k → P1

k is given by the natural mapA1
k(A) → P1

k(A) which takesa ∈ A (viewed inA1
k(A),

which is precisely the underlying set toA) to the submodule ofA2 spanned by(1, a). And more generally, it is clear
howAr

k maps toPr
k, in r + 1 canonical ways.

2001-12-15:006
Let X be any set, andk any field. Consider the ringkX of all k-valued functions onX, with pointwise addition

and multiplication. Ifp is a prime ideal ofkX , then the setU = {A ⊆ X : 0A ∈ p} is a ultrafilter onX, where
0A ∈ kX is defined by0A(x) = 0 if x ∈ A and0A(x) = 1 otherwise; furthermore, it is then clear thatp coincides
precisely with the set of allf ∈ kX such thatZ(f) = {x ∈ X : f(x) = 0} belongs toU . But this clearly implies
that p is maximal. So all prime ideals ofkX are maximal:kX is zero-dimensional. (Recall that a ring is artinian,
i.e. satisfies the descending chain condition, iff it is noetherian, i.e. satisfies the ascending chain condition, and zero-
dimensional, i.e. every prime ideal of it is maximal.) Thus, we have a natural identification (as topological spaces)
βX = Spec(kX) = Spm(kX), whereβ denotes Stone-Čech compactification (in the case of a discrete setX, this
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is the set of ultrafilters ofX), andSpec(kX) is the set of prime ideals ofkX andSpm(kX) the set of its maximal
ideals. In particular, note that the Stone-Čech compactification of any discrete set is naturally ak-scheme for any field
k (“naturally” in the sense that for any map of setsX → X ′ the morphismSpec(kX) → Spec(kX′

) deduced from the
obvious morphism of ringskX′ → kX coincides, as far as the underlying topological map goes, with the morphism
βX → βX ′ of pushforward of ultrafilters obtained by functoriality of the Stone-Čech compactification). Also note
thatSpec(kX) is Hausdorff. Ifp ∈ βX corresponds to a ultrafilterU , then the residue fieldk(p) of Spec(kX) atp is
precisely the ultraproduct ofX copies ofk reduced byU .

Note that if we considered instead the ringk[X] of k-valued functions onX with finite image, then we would also
have the identificationβX = Spec(k[X]) = Spm(k[X]), but this time with the residue field ofSpec(k[X]) atp ∈ βX
being simplyk.

2001-12-15:007
(This more or less continues2001-12-15:006.)
The obvious “next step” would be to considerX a topological space, andkX the ring oflocally constantk-valued

functions onX (i.e. continuous functions fromX to k, wherek is given the discrete topology). Such a function takes
each value on a clopen subset ofX, and given a prime idealp of kX we are led to considerU the set of clopenA ⊆ X
such that0A belongs top. ThenU is a ultrafilter in the boolean algebra of clopen subsets ofX, andp is precisely the
set of allf ∈ kX such thatZ(f) (which is clopen) belongs toU . Again, every prime ideal ofkX is maximal: we
haveSpec(kX) = Spm(kX), but it does not in general coincide with the Stone-Čech compactification ofX.

Call ρX this set of ultrafilters on the boolean algebra of clopen subsets ofX, and topologizeρX by declaring
the{U ∈ ρX : A ∈ U } for A clopen inX to form a basis of closed sets; note that these sets are actually clopen
in ρX. And we mapX to ρX by sendingx ∈ X to the setUx of clopenA ⊆ X such thatx ∈ A: this is evidently
continuous and has a dense image; further,ρX is compact (Hausdorff). By the universal property of the Stone-Čech
compactification, it follows thatX → ρX factors asX → βX → ρX, and the latter map is surjective (since its
image is dense and closed). In fact, it can be described precisely: ifp ∈ βX corresponds to a z-ultrafilterU (that is,
a ultrafilter on the lattice of zero-sets ofX), then the set of clopenA ⊆ X which belong toU forms a ultrafilter on
the boolean algebra of clopen subsets ofX, and thus defines a point ofρX, which is precisely the image ofp by the
canonical mapβX → ρX.

Now this construction is classical:ρX is the Stone space of the boolean algebra of clopen subsets ofX. The space
ρX is compact Hausdorff zero-dimensional (has a basis consisting of clopen sets), as we have seen; in fact, the map
X → ρX is the universal map fromX to a compact Hausdorff zero-dimensional space (in particular,ρρX = ρX).

Note that applying functoriallyρ to X → βX → ρX we see thatρβX is canonically isomorphic toρX. In
particular, it means that ifβX is zero-dimensional, then it is equal toρX.

Among other things, we have seen that any compact Hausdorff zero-dimensional spaceX is naturally ak-scheme
for any fieldk, namely the spectrum of the ringkX of locally constantk-valued functions onX. Appropriately, this
scheme is zero-dimensional (this is the translation of the fact that any prime ideal ofkX is maximal).

Note that if we considered instead the ringk[X] of locally constantk-valued functions onX with finite image(for
X an arbitrary topological space), then we would also have the identificationρX = Spec(k[X]) = Spm(k[X]), but
the residue field ofSpec(k[X]) atp ∈ ρX is k whereas that ofSpec(kX) is (in general) larger. (Not always, though: if
X = ω1 with the order topology, thenρω1 = βω1 = ω1 + 1 = ω1 ∪ {ω1}, and every locally constant function onω1

has finite image, sokω1 coincides withk[ω1] and in particular the residue field at the point “at infinity” (ω1) is simply
k.)

2001-12-15:008
Let k be a field. Callk((t)) the field of Laurent series in the variablet with coefficients ink: in other words,k((t))

is the quotient field of the ringk[[t]] of formal power series in the variablet with coefficients ink. We can then, of
course, considerk((u))((v)): since this is a field containingk[[u]][[v]]= k[[u, v]], it also contains its quotient field which
we denote byk((u, v)).
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Now, an element ofk((u))((v)) is a formal sum
∑

aiju
ivj , with i andj ranging overZ, satisfying: (1) there exists

j0 ∈ Z such thataij = 0 if j < j0 (for all i), and (2) for allj ∈ Z, there existsi0 ∈ Z such thataij = 0 if i < i0. In
other words, the set of pairs(i, j) ∈ Z2 such thataij 6= 0 is bounded at the bottom, and at the left on every horizontal
line.

Givenf ∈ k[[u, v]], we can writef = vj0ui0(1 + vukh)g, whereg ∈ [[u, v]] is aunit (that is, its coefficient in
u0v0 is non-zero),i0, j0, k ∈ Z andh ∈ [[u, v]]. Now (1 + vukh)−1 = 1− vukh + v2u2kh2 + · · · in k((u))((v)): this
has the property that there is a line with negative slope such that all non-zero coefficients are above that line; so the
same thing holds forf−1. Consequently, this property is true of any element ofk((u, v)) when seen ink((u))((v)).

Conversely, iff ∈ k((u))((v)) is such that there is a line with negative slope such that all coefficients below that
line are zero, is it true thatf ∈ k((u, v))? Or else, how can we characterize elements ofk((u, v)) when written in
k((u))((v))? It seems, for example, that

∑+∞
k=0 cku−kvk, is in ((u, v)) iff

∑
cktk is in k(t). And what about the field

of seriesf ∈ k((u))((v)) such that there is a line with negative slope such that all coefficients below that line are zero?
Does it have any nice properties (or a geometric description)? More generally, it seems we can consider the field of
formal sums

∑
aiju

ivj , with i andj ranging overZ, whereaij are all zero outside of some translate of a fixed (closed)
angular sector of angle< π and not containing the negative part of either coordinate axis.

2001-12-17:009
Consider a latticeΛ of equilateral triangles in the plane; pick some vertex and number it “0”; then number the

six vertices surrounding it “1”, “ 5”, “ 4”, “ 6”, “ 2” and “3”, in this order; and complete the numbering of all remaining
vertices by imposing that three vertices that follow consecutively on any line are numbered in arithmetic progression
in Z/7Z. This has some exceptionally nice properties, among which the following. LetΛ0 be the lattice of points
numbered0: this is also a lattice of equilateral triangles, with edge length

√
7 times that ofΛ. Then on the flat

torusC/Λ0, the seven points corresponding to the points numbered “0”, “ 1”, “ 2”, “ 3”, “ 4”, “ 5” and “6”, are pairwise
equidistant. And these can be written as the centers of seven regular hexagons, each adjacent and identical to the six
other ones, which cover the torus. If we lift these hexagons to the plane, we obtain a partition of the plane in seven
regions, with the property that no two points at a distance between2a and

√
7a (with a being the edge length ofΛ) of

one another can belong to the same region. (Recall that if we wish to partition the plane ink regions so that no two
points at distance1 from one another belong to the same region, then we needk ≥ 4; and thos shows that it can be
done fork = 7. As far as I know, the question of whetherk = 4, k = 5 andk = 6 are possible is still open.)

2001-12-17:010
Let X be a proper noetherian scheme. The sum of two ample Cartier divisors onX is again ample: indeed, if

D andD′ are ample, andF is a coherent sheaf onX, there is somem0 such that form ≥ m0 the sheafF (mD) is
generated by its global sections andO(mD′) similarly, and thenF (m(D +D′)) = F (mD)⊗O(mD′) is generated
by its global sections. The sum of two very ample Cartier divisors onX is again very ample: this follows from the
Segre embedding.

Question: what about the sum of an ample and a very ample Cartier divisor? Can it fail to be very ample (for a
well-behavedX)?

2001-12-18:011
Let PA stand for a recursively axiomatizable first-order theory for doing arithmetic which embeds all primitive

recursive functions (e.g. Peano’s axioms). Then we can write in the language ofPA the assertionG stating that “G is
not a theorem ofPA”: this is because (a) Gödel’s scheme allows one arithmetize deduction and speak about provability
in PA (this uses the fact thatPA is recursively axiomatizable, and embeds all primitive recursive functions), and (b) the
fact thatG speaks aboutG is not a problem, thank’s to Quine’s usual trick. Now assumeConsis(PA) (i.e. the statement
“⊥ is not a theorem ofPA”, arithmetized by Gödel’s scheme and written in the language ofPA); then, ifG is a theorem
of PA, then “G is a theorem ofPA” is a theorem ofPA (proofs can be upgraded to a proof of their existence), so “G
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is not a theorem ofPA” is not a theorem ofPA (since we have assumedConsis(PA)), which is exactly to say thatG
is not a theorem ofPA; this shows thatG cannot be a theorem ofPA. SoConsis(PA) implies thatG is not a theorem
of PA, in other words,G itself: we haveConsis(PA) =⇒ G. And sinceG is not a theorem ofPA providedPA is
consistent (we have proved this), the same holds ofConsis(PA). This is Gödel’s incompleteness theorem.

Now in an ambient metamathematics (governed by, say,ZF, i.e. Zermelo-Fraenkel set theory), we have a model,
viz. N, of PA (actually, I skip a little here: in the preceding paragraph I did not requirePA to beω-consistent, merely
to be “some” well-behaved formal system for doing arithmetic; here, I really have the true Peano’s axioms in mind).
Now Consis(PA) is true in N (andZF proves it): indeed, if we assume¬Consis(PA), then there is a proof of⊥ in
PA, and since the axioms ofPA are true inN, then⊥ is true, and it is not. The key here is that in the language of
ZF we can form a statementT (n) which states that “the proposition labeledn in the chosen coding of arithmetic, is
true (inN)”; so ZF can speak about arithmetic truth, whereasPA can only speak about provability: it can encode the
statementP (n) which states that “the proposition labeledn in the chosen coding of arithmetic, is a theorem ofPA”
(e.g.Consis(PA) is¬P (“⊥”)); and we have(∀n)(P (n) =⇒ T (n)) (this is a theorem ofZF), and since evidently we
have¬T (“⊥”), we also have¬P (“⊥”), i.e.Consis(PA).

SoConsis(PA) is true (inN, this being a theorem ofZF); but then the same reasoning shows thatConsis(PA∧
Consis(PA)) is true; and then that the theory obtained by addingthat axiom toPA is still consistent; “and so on”.
The question is, where, exactly, to we stop?

If we let PA0 = PA, andPAα+1 = PAα ∧Consis(PAα), andPAδ =
∧

α<δ PAα if δ is limit, the question is,
when does this stop making sense? At the smallest ordinal such thatPAα is no longer recursively axiomatizable: this
is probably something like the smallest ordinalα such that there is no (primitive?) recursive well-order onN of order
typeα. Now what about the greatest system in question, call itPA∞: it is no longer recursively axiomatizable—does
Gödel’s theorem still apply? What are its theorems (e.g. is every true statement inN a theorem ofPA∞, or am I just
being utterly naïve)?

2001-12-21:012
Each (infinite) countable ordinalα can be represented as a certain well-order onN, thus as a certain subset of

N × N (trivially not unique). Now given any countable family of subsets ofN × N we can consider the smallest
countable ordinalα which hasno representation as one of these subsets. For example, taking the recursive subsets of
N×N, we consider the smallest countable ordinal which cannot be represented by some computable well-ordering on
N. Similarly, we can consider the smallest countable ordinal which cannot be represented by some well-ordering onN
given by a primitive recursive function (resp. a function calculable in polynomial time by a Turing machine, resp...).
How can we provestrict inequalities between these ordinals?

2001-12-21:013
(“The Very Basic General Tao of the Universal Ring.”)
Let k be any ring and letR = Spec k[t] be the forgetful functor fromk-algebras to sets. By flat descent, this

is a sheaf on the category of affinek-schemes, for any “reasonable” topology. Moreover, it is an internal ring in the
topos of sheaves of sets (for the “reasonable” topology in question), because eachR(A) can trivially be endowed with
a ring structure (in a natural fashion), by “unforgetting” what was forgotten. To say that a sectionx of R (in other
words, an elementx of somek-algebraA = R(A), whereSpec A is the affine scheme on which the section is taken)
is “not equal to zero”, i.e.¬(x = 0) for the Kripke-Joyal sheaf semantics, means that for any morphismA → B
of k-algebras (i.e. for anyA-algebraB), if the image ofx in B is 0 thenB is covered by the empty family (this
translates⊥), and the latter happens exactly whenB = 0 because we have assumed a “reasonable” topology. In other
words,{x ∈ R : ¬(x = 0)} is the functorR× which takes ak-algebraA to the setR×(A) = A× of its invertible
elements (indeed, to say that every morphismA → B sendsx to some non-zero element whenB 6= 0 means thatx is
invertible); and this functor is a sheaf for any “reasonable” topology. Now this is also{x ∈ R : (∃y ∈ R)(xy = 1)},
the “set of invertible elements ofR”, for pretty much obvious reasons. So we have(∀x ∈ R)((¬(x = 0)) ⇐⇒

5



((∃y ∈ R)(xy = 1))) for the Kripke-Joyal semantics. It is in this sense thatR is actually a “field”. (Note, by the
way, that we have¬(0 = 1) in R, which means that ak-algebra in which0 = 1 is covered by the empty family.)

Furthermore, the sheaf{x ∈ R : ¬¬(x = 0)} is easily seen to be the sheaf which takes ak-algebraA to its set of
nilpotent elements (indeed, to say that every morphismA → B sendsx to some non-invertible element whenB 6= 0
means thatx is nilpotent). It is an ideal ofR (in intuitionistic set theory, ifA is any ring, then{x ∈ A : ¬¬(x = 0)}
is an ideal ofA ). In fact, it is exactly the ideal{x ∈ R : (∃n ∈ N)(xn = 0)} of nilpotent “elements” ofR: one
direction is clear in view of the description we have given and the other follows becauseR is a “field” as seen above.
So we have(∀x ∈ R)((¬¬(x = 0)) ⇐⇒ ((∃n ∈ N)(xn = 0))).

In algebraic geometry, the additive group ofR is writtenGa, and the multiplicative groupR× is writtenGm.
Both are (representable by) affinek-schemes, respectivelyGa = Spec k[t] andGm = Spec k[t, t−1]. However,
{x ∈ R : ¬¬(x = 0)} is not representable by ak-scheme (as soon ask is not the zero ring). We now prove this fact
(I am indebted to Joël Bellaïche for showing me how to do it).

First, we can assume thatk is an algebraically closed field. Indeed, letk → Ω be the algebraic closure
of the quotient ofk by some maximal ideal. Suppose the functorV = {x ∈ R : ¬¬(x = 0)} taking
a k-algebra to its set of nilpotents, is reprensentable by ak-schemeV ; then the functor of points of the
Ω-schemeV ×Spec k SpecΩ is the functor taking anΩ-algebraA to its set of nilpotents (which is the same
as anΩ-algebra or as ak-algebra). So if we have the statement forΩ, it also holds fork.

So considerk an algebraically closed field and suppose the functorV taking ak-algebra to its set of
nilpotents, is representable by ak-schemeV . Now V (k) has a single element, corresponding to0 ∈ k, so
V has a single closed point; moreover, ifK is any extension field ofk (i.e. any function field overk), then
V (K) still has a single element, which comes fromV (k), so thatV has no other point than the closed point
(here, a “point” means a point of the underlying topological space of thek-schemeV ).

But this shows thatV is affine, because there must exist some affine subscheme containing the unique
point ofV , and this must then be all ofV . Let V = Spec∆, where∆ is ak-algebra.

SinceV has a single point, it is irreducible, so its reduced schemeV red is integral, and it isSpec(∆/N)
whereN is the nilradical of∆ (i.e. the ideal of nilpotent elements of∆). But then∆/N is an integral domain
with a unique prime ideal,(0), which is therefore also maximal, so that∆/N is a field, and this field isk
(since the closed point corresponding to(0) was already defined overk).

By now we know that every element of∆ not belonging tok must be nilpotent.
The natural transformationV → R (injecting canonically the set of nilpotent elements of ak-algebra

A in the set ofall elements ofA) corresponds to a morphism of schemesV → Spec k[t], or again to a
morphism ofk-algebrask[t] → ∆, or yet again to an elementδ ∈ ∆. And δ does not come fromk because
V → Spec k[t] is not constant. Thereforeδ is nilpotent, sayδn = 0. But this means thatany nilpotent
elementx of anyk-algebraA satisfiesxn = 0, and this is certainly impossible.

This is the desired contradiction.
Even thoughV = {x ∈ R : ¬¬(x = 0)} somehow “looks like” the (formal) schemeSpec k[[t]] (recall that

k[[t]] is the projective limit of thek[t]/(tn) with n ranging overN), yet is not equal. There is a mapV → Spec k[[t]]
(because ifx ∈ A is nilpotent, we can form a morphismk[[t]]→ A which sendst to x), which is a monomorphism
in the category (topos) of sheaves, but it is not surjective (a morphismk[[t]]→ A can exist without the image oft
being nilpotent, witness the identity morphism onk[[t]]). It is also true that morphismsV → R are precisely given by
elements ofk[[t]]. Morality: the category of schemes does not have nice inductive limits (even filtered inductive limits
when all arrows are monomorphisms are not nice).

2001-12-21:014
(This more or less continues2001-12-21:013.)
Let k be any ring and letR be the “universal ring”, i.e. the forgetful functor fromk-algebras to sets, endowed

with its internal ring structure in the topos of sheaves of sets on the category of affinek-schemes for some “reasonable”
topology. And letN = {x ∈ R : ¬¬(x = 0)} (written V in 2001-12-21:013) be the ideal of nilpotent elements of
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R, the sheaf taking ak-algebraA to the set of its nilpotent elements. We want to try to understandR′ = R/N , the
reduced ring ofR.

A section ofR′ on Spec A (with A a k-algebra) is a (descent) datum as follows: anA-algebraB which covers
A for the given (“reasonable”) topology (e.g.B a finitely presented faithfully flatA-algebra), and an elementx ∈ B
such that the elementx ⊗ 1 − 1 ⊗ x ∈ B ⊗A B is nilpotent; furthermore, we declare two such data(B1, x1) and
(B2, x2) to be equivalent when the elementx1 ⊗ 1− 1⊗ x2 ∈ B1 ⊗A B2 is nilpotent. And ifA → A′ is a morphism
of k-algebras, it takes a datum(B, x) onA to the datum(B ⊗A A′, x⊗ 1) onA′.

Fact: if Ω is an algebraically closed field (overk), thenR′(Ω) = R(Ω). Indeed, letB be a non-zeroΩ-algebra
(necessarily faithfully flat), andx ∈ B be such thatx⊗ 1− 1⊗ x ∈ B ⊗Ω B is nilpotent. LetB′ be theΩ-subalgebra
of B generated byx, in other words theΩ-vector subspace ofB generated by the powers ofx: evidently,B′ ⊗Ω B′ is
anΩ-vector subspace ofB ⊗Ω B. If B′ is infinite dimensional, then it is isomorphic to the ringΩ[x] of polynomials
in one variable with coefficients inΩ, andx ⊗ 1 − 1 ⊗ x cannot be nilpotent. Otherwise, letx act (faithfully) on the
finite-dimensionalΩ-vector spaceB′ by multiplication, and letλi be its eigenvalues, witnessed by the eigenvectorsvi,
sayxvi = λivi, with λi ∈ Ω. If there existi andj such thatλi 6= λj , then(x⊗1−1⊗x)(vi⊗vj) = (λi−λj)(vi⊗vj)
in B′⊗Ω B′, so thatx⊗ 1− 1⊗ x cannot be nilpotent. Therefore allλi are equal to the same, sayλ; but thenx−λ is
nilpotent, and this shows that the class of the datum(B, x) in R′(Ω) is the same as the class of(Ω, λ). On the other
hand, the class of(Ω, λ) and the class of(Ω, λ′) are evidently different, and we have indeed shownR′(Ω) = R(Ω).

The same statementR′(K) = R(K) therefore also holds for any fieldK (not necessarily algebraically closed)
overk, simply by embedding it in its algebraic closure. (Update: this is false, cf. 2002-04-06:041.)

Now if A is an integrally closed domain (overk), we again wish to show thatR′(A) = R(A). LetK be the field
of fractions ofA, andB a faithfully flatA-algebra. SinceA ½ K, it follows thatB ½ BK (whereBK = B ⊗A K)
by flatness. Now ifx ∈ B is such thatx⊗ 1− 1⊗ x ∈ B ⊗A B is nilpotent, then it is also nilpotent inBK ⊗K BK ,
sox− λ is nilpotent inBK for some (unique)λ ∈ K as seen above. How do we conclude from there? It shouldn’t be
too hard, but I seem completely stuck.

2001-12-21:015
Let us try to contract the axisx = 0 in the affine plane. More precisely: letA2

k = Spec k[x, y] (over a fieldk),
let A1

k = Spec k[x] and letA be thek-subalgebra ofk[x, y] generated by thexyi for i ∈ N. SoA is thek-algebra
of polynomials which have no term inyi for i > 0, or, in other words, which are constant along the axisx = 0. The
projection morphismA2

k → A1
k (determined by the inclusionk[x] ½ k[x, y]) factors throughSpec A in the obvious

way. Note thatA is a (faithfully) flatk[x]-algebra, because it is free as ak[x]-module (with basis1, xy, xy2, xy3, . . .).
The fiber ofSpec A over a closed point ofA1

k other than the origin is isomorphic toSpec k[y], whereas the fiber over
the origin isSpec k.

Is the ringA noetherian? (Update: the answer isno, see2001-12-23:017.) Is it catenary? Isk[x, y] flat overA?
Numerous questions of this kind can be asked...

Similar techniques can be used to perform many other kinds of contractions (e.g. two points in the plane to one:
this was used by Luc Illusie to provide me with an example of a non-placid scheme).

2001-12-22:016
Some facts about modules over commutative rings:

• A module over a local ring is projective iff it is free (“Kaplansky’s theorem”: cf. Matsumura,Commutative Ring
Theory, theorem 2.5).

• A module of finite type over a local ring is flat iff it is free (cf. Matsumura,op. cit., theorem 7.10).
• A module of finite presentationM over a ringA is projective iff its localizationMm is free overAm for every

maximal idealm of A (cf. Matsumura,op. cit., theorem 7.12).
• A moduleM over a ringA is flat iff its localizationMm is flat overAm for every maximal idealm of A (cf. EGA,

0.6.3.3).
• A module of finite presentation is flat iff it is projective (this follows from the above).
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• A module is flat iff it is a filtered inductive limit of free modules (“Govorov-Lazard theorem”: cf. Eisenbud,
Commutative Algebra with a View Toward Algebraic Geometry, theorem A.6.6).

• A module over a principal ideal domain is flat iff it is torsion free (cf. Eisenbud,op. cit., corollary 6.3).
• A submodule of a free module over a principal ideal domain is free (cf. Hilton & Stammbach,A Course in

Homological Algebra, theorem 5.1). In particular, every projective module over a principal ideal domain is free.
• A module of finite type over a noetherian integral domain is torsion free iff it is a submodule of a free module of

finite type (Joël Bellaïche and Gaëtan Chenevier, personal communication).
Question: can we find analogues of these statements over non necessarily commutative rings?

2001-12-23:017
(This answers a question of2001-12-21:015.)
The ringA of polynomialsf ∈ k[x, y] having zero coefficient inyi for all i > 0, introduced in2001-12-21:015

is not noetherian. Indeed, letIn be the ideal ofA generated by thexyi with 0 ≤ i ≤ n: thus,In consists of thef ∈ A
having no coefficient inxyi for i > n. TheIn form a strictly ascending chain of ideals ofA; and their unionI∞ is the
ideal consisting of thef ∈ A whose constant coefficient (the value on the axisx = 0) is zero: it is a maximal ideal.

The quotientA/I∞ is isomorphic tok. On the other hand, the quotientsA/In are all isomorphic to the extension
of k by a countable infinity of infinitesimals, the product of any two of which (including two the same) is zero.

2001-12-23:018
Let k be any ring (this means “commutative”, of course). We say that ak-algebraA is connectedwhen there

are exactly two idempotents, namely0 and1 (note that this impliesA 6= 0, because the zero-ring has exactly one
idempotent which is both0 and1). Since idempotents ofA are the same ask-algebra homomorphismsk2 → A, this
is again the same as saying thatHomk(k2, A) has exactly two elements.

Unfortunately, the tensor product of two connectedk-algebras need not be connected, even whenk is a field. For
example,C is a connected étaleR-algebra, but its tensor product with itself isC ⊗R C = C2 and it is not connected.
However, over an algebraically closed fieldΩ, the tensor product of two connected algebras is again connected.
(...continued at2001-12-30:021...)

See also2001-12-30:022.

2001-12-26:019
If k is a field, andA a k-algebra (this means “commutative”, of course) of finite type, thenA is a Jacobson

ring, in other words every prime ideal is an intersection of maximal ideals: this is the “advanced formulation” of
the Nullstellensatz. (More generally, this holds for an algebra of finite type over a Jacobson ring.) In particular,
the Jacobson radical (the intersection of the maximal ideals) ofA coincides with the set of nilpotent elements (the
intersection of the prime ideals) ofA. Moreover, the residue fields ofA (modulo some maximal ideal) are finite field
extensions ofk (more generally, of the corresponding residue field of the base ring, for a Jacobson base ring).

Now letΩ be an algebraically closed field, andA anΩ-algebra. Ifx ∈ A, to see whetherx is nilpotent (resp. idem-
potent) inA, it suffices to see whether it is in the algebraΩ[x] ⊆ A generated byx overΩ, or in any otherΩ-subalgebra
A0 of A of finite type. In particular (by the above), it means thatx is nilpotent iff it belongs to all the maximal ideals
of A0, and the quotient field of any such ideal isΩ. Therefore,x is nilpotent iff everyΩ-algebra homomorphism
η: A0 → Ω takesx to 0. This can be used to show that the tensor product of two reducedΩ-algebras is reduced.
Indeed, letA andA′ be two reducedΩ-algebras, andx ∈ A⊗Ω A′ nilpotent: we can find twoΩ-subalgebrasA0 of A
andA′0 of A′ of finite type such thatx belongs to the subalgebraA0 ⊗Ω A′0 of A⊗Ω A′ (e.g. writex as a finite linear
combination of tensor product of elements ofA and ofA′ and take theΩ-subalgebras generated by these elements).
(...continued at2001-12-30:020...)
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2001-12-30:020
(This continues2001-12-26:019.)
We wish to show that ifΩ is an algebraically closed field, then the tensor product of two reducedΩ-algebras is

again reduced. So letA andA′ be two reducedΩ-algebras, andx ∈ A ⊗Ω A′ be nilpotent. Writex =
∑

i ai ⊗ a′i,
with ai ∈ A anda′i ∈ A′; furthermore, we can assume that thea′i are linearly independent (overΩ). Call A0 theΩ-
subalgebra ofA (finitely!) generated by theai. Now for every maximal idealm of A0, the class ofx in (A0/m)⊗Ω A′

(which is canonically isomorphic toA′ sinceA0/m = Ω canonically becauseA0 is an algebra of finite type over the
algebraically closed fieldΩ) is nilpotent, so it is0 sinceA′ is reduced; and, since thea′i are linearly independent, the
ai are all inm, so they are in every maximal ideal ofA0, hence in every prime ideal (A0 is a Jacobson ring), so they
are all zero (A0 is reduced). Sox = 0, QED.

This proof is extremely unsatisfactory because of the use of the linear independence of thea′i, which simply
doesn’t seem to belong there. Geometrically, we considerx as anΩ-valued function onSpm(A0⊗Ω A′0) = Spm A0×
Spm A′0, which is zero everywhere, so it is zero on every line (corresponding to a maximal idealm of A0), but exactly
how we go from there tox being zero is obscure at best.

2001-12-30:021
(This continues2001-12-30:020and2001-12-23:018.)
We wish to show that ifΩ is an algebraically closed field, then the tensor product of two connectedΩ-algebras is

again connected. So letA andA′ be two reducedΩ-algebras, ande ∈ A⊗Ω A′ be idempotent. Writee =
∑

i ai⊗ a′i,
with ai ∈ A anda′i ∈ A′. Call A0 theΩ-subalgebra ofA (finitely!) generated by theai andA′0 that generated by
thea′i. Now if e is not1, there exists a maximal ideal, ofA0 ⊗Ω A′0, which we can writeA0m

′ + mA′0 for maximal
idealsm of A0 andm′ of A′0, to which it belongs. The class ofe in (A0/m)⊗Ω A′0 (which is canonically isomorphic
to A′0 sinceA0/m = Ω canonically becauseA0 is an algebra of finite type over the algebraically closed fieldΩ) is
idempotent, so it is0 or 1 sinceA′0 is connected, and since it belongs tom′, it is not1, so we have in facte ∈ mA′0.
Then the class ofe in A0 ⊗Ω (A′0/m′′) = A0, for any maximal idealm′′ of A′0, is an idempotent ofA0, hence0 or 1,
and it cannot be1 because it is inm. Soe belongs to every maximal ideal ofA0 ⊗Ω A′0, so it is nilpotent, so it is0,
QED.

This proof absolutely sucks! Geometrically, we say first that an ringA is connected iffSpm A is connected: the
“only if” part is evident, and for the “if” part, notice that ifU andV are disjoint open sets which coverSpm A, then
there exist elementspU andpV of A which vanish exactly onU andV respectively, and thenpU + pV is invertible
(because it belongs to no maximal ideal) whereaspUpV = 0, and then(pU +pV )−1pU is idempotent. Furthermore, we
haveSpm(A0 ⊗Ω A′0) = Spm A0 × SpmA′0 (as sets!), and as far as the topology is concerned, we use the following
easy topological lemma. Lemma: letX andY be two connected topological spaces, and consider some topology on
X ×Y (not necessarily the product topology) such that the restriction to every{x}×Y is canonically homeomorphic
to Y and the restriction to everyX × {y} is canonically homeomorphic toX; thenX × Y is connected. Evidently,
the Zariski topology onSpm(A0 ⊗Ω A′0) = Spm A0 × Spm A′0 has this property. Still, the whole process, whether
presented algebraically (as above) or geometrically (as we have just done) is horrendous.

2001-12-30:022
(This resumes2001-12-23:018.)
As we have seen, a (commutative)k-algebraA is connected iffHomk(k2, A) has exactly two elements (notice

that we don’t consider the zero algebra to be connected). A more satisfactory notion is that of a relatively connected
algebra: namely when the mapHomk(k2, k) → Homk(k2, A), induced by the canonical morphismk → A, is
bijective (here the idea is thatA has precisely as many “connected parts” (a deliberately vague term) ask); of course, if
k is connected, this is just the same as saying thatA is connected. And then we create a relative notion: ank-algebraA
is universally relatively connected iff for everyk-algebraB theB-algebraA⊗k B is relatively connected (“relatively”
as aB-algebra!). Evidently, a universally relatively connectedk-algebra is relatively connected; a counter-example
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is readily found: takeC[x] as aC[y]-algebra withy = x2 (the parabola), which is (relatively) connected, but not
universally relatively connected as can be seen by tensoring by theC[y]-algebraC given by, say,y 7→ 1.

We should, of course, mention that the setHomk(k2, A) of idempotents of ak-algebraA can be ordered by
letting e ≤ e′ iff ee′ = e. This makes it into a lattice with least element0, greatest element1, greatest lower bound
given byinf(e, e′) = ee′, and least upper bound bysup(e, e′) = e + e′ − ee′; better even: it is a boolean algebra with
“negation”e 7→ 1− e. This can also be identified with the boolean algebra of clopen subsets ofSpec A (compare with
2001-12-15:007; see also2002-03-18:038).

If A is a noetherian algebra, e.g. an algebra of finite type over a fieldk, then the boolean algebraHomk(k2, A)
of idempotents ofA is finite. This follows (for example) from the following lemma on boolean algebras: a boolean
algebra in which every (strictly) decreasing (or, equivalently, increasing) sequence of elements is finite, is finite.

Let us prove the fact. Assume on the contrary that we have an infinite boolean algebraB in which
every decreasing sequence of elements is finite (an infinite well-founded boolean algebra, that is). Recall
that an elementu > ⊥ is called anatom iff there is nov such thatu > v > ⊥. CertainlyB, being well-
founded, has atoms: for example, start withu0 = >; now either this is an atom or there exists au1 such that
u0 > u1 > ⊥; so eitheru1 is an atom or there exists au2 such thatu0 > u1 > u2 > ⊥; and so on, and
the process must stop with an atom since otherwise the(ui) would form an infinite decreasing sequence,
contrary to the hypothesis thatB is well-founded.

Now, if u = u0 is an atom, every elementv is either disjoint fromu (in the sense thatu u v = ⊥),
or it is greater or equal tou (which is equivalent tou u v = u); this is becauseu u v ≤ u, so it can
be only⊥ or u. And the boolean algebraB0 = B is the product of the two-element algebra{⊥,>} by
the subalgebraB1 consisting of elements disjoint fromu (the term “subalgebra” is actually an abuse of
language since> is not the same inB1 as inB, but the meaning is clear anyway). NowB1 verifies the
same hypotheses asB. So we get an infinite sequenceu0, u1, . . . of pairwise disjoint atoms. And then the
sequenceu0 < u0 t u1 < u0 t u1 t u2 < · · ·, forms an infinite increasing sequence of elements ofB, and
we deduce an infinite decreasing sequence, QED.
A noetheriank-algebraA is a direct product of finitely many connectedk-algebras (note that the zero algebra is

the empty product).
If Ω is an algebraically closed field, then any (relatively) connectedΩ-algebra is, in fact, universally relatively

connected. Indeed, we have to show that ifB is anΩ-algebra andA a connectedΩ-algebra, then the idempotents
of A ⊗Ω B are exactly those ofB; now by standard arguments (see, e.g.,2001-12-26:019), we can assume thatA
andB are noetherian, and furthermore thatB is connected, and we have then to show that the tensor product of two
connectedΩ-algebras is again connected, which was done in2001-12-30:021.

If A is a universally relatively connected algebra over some ringk, then for every morphismk → Ω to an
algebraically closed fieldΩ, we haveA ⊗k Ω (relatively) connected. This follows immediately from the definition.
We say that the algebraA hasconnected geometric fibers.

The converse seems to be true: ifA is ak-algebra with connected geometric fibers, thenA is universally relatively
connected. But I don’t have the patience to write it in full just now.

2002-01-03:023
If A is a noetherian, reduced, (commutative) ring andKA is its total ring of fractions (i.e. the localization ofA

inverting the multiplicative setS of non-zerodivisors), the Olivier Wittenberg points out to me thatKA is an artinian
ring (precisely, a finite product of fields).

If A is not reduced, this is no longer necessarily true. The simplest example seems to beC[[x]][y]/(xy, y2): every
non zerodivisor ofA is already invertible, butA is not artinian. However, this example is not really fascinating.

If A is not noetherian, even the conclusion thatKA is zero dimensional (recall that “artinian” is equivalent
to “noetherian and zero-dimensional”) is not necessarily true. Indeed, considerAn = C[[x1, . . . , xn]]/((xixj)i 6=j),
i.e. the ring of formal series inn variables the product of any two (different) of which is zero, and letA be the
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inductive limit of theAn with the obvious (injective) arrows. Then every non-zerodivisor ofA is already invertible,
butA is not zero-dimensional.

This leaves us to challenge the idea of the total ring of fractions as an interesting construction. Still, it would
be nice, given an arbitrary ringA, to find a zero-dimensional ringKA and a morphismA → KA that satisfies some
universal property among such. Thus,Spec KA → Spec A would form some kind of “zero-dimensional skeleton” (of
generic points).

In the first case given above,A = C[[x]][y]/(xy, y2), we should haveKA = C((x))×C[y]/(y2): note in particular
that the prime ideals ofKA, viz. ((1, 0)) and((0, y)), do not correspond to the minimal prime ideals ofA (there is
only one such, namely(y))—here, we have something like an embedded component. In the second case, withA the
inductive limit of theAn defined above,KA should be the subset of the direct product

∏∞
i=1 C((xi)) of countably

many copies ofC((x)) consisting of families(f1, f2, . . .) such that for somei0 and somec ∈ C we havefi = c for
i > i0. (Perhaps it would be more reasonable to considerKA as a pseudo-ring, i.e. not require the existence of a
multiplicative unit, in which case we can just letc = 0.)

How can we computeKA in general, and how can we check that the above assertions are correct?

2002-01-07:024
Is the following assertion true (it would be pleasant): a (commutative) ringA is reduced and zero-dimensional iff

every element is the product of an idempotent by an invertible element? And can we find some analogous statement
for possibly non-reduced rings?

If A has the property that every element is the product of an idempotent by a unit, then this also holds for every
quotient ofA, and in particular for the quotient ofA by a prime ideal. But the quotient by a prime ideal is an integral
domain, so its only idempotents are0 and1, so every element is either0 or invertible, so the quotient is a field, so the
prime ideal is maximal. So every prime ideal is maximal, andA is indeed zero-dimensional. And it is easy to see that
it is reduced: ifu is a unit ande is an idempotent, then forn ≥ 1 we have(ue)n = une and this can be zero only
if e itself is zero. Therefore the “if” direction above is correct. (Update: the “only if” direction is also correct, see
2002-03-18:038.)

2002-01-08:025
(This comes from an attempt to settle2002-01-07:024.)
Let A be areduced(commutative) ring: this means that the intersection

⋂
p∈Spec A p of all prime ideals ofA is

(0). If I is an ideal ofA, the intersection
⋂

I⊆p∈Spec A p of all prime ideals ofA containingI is the radical
√

I of I,
which is I exactly whenA/I is reduced (this does not requireA reduced). Now is it true (forA reduced) that, for
any idealI of A, the intersectionI0 =

⋂
p∈Spec A(p + I) of the sum ofI with every prime ideal ofA, is exactlyI?

EvidentlyI0 containsI and is contained in the radical
√

I of I. The statement is clear whenI is radical (i.e.A/I is
reduced), or in the case whereA is an integral domain or more generally whenI contains a prime ideal. But does it
always hold? (Update: the answer isno, see2002-01-09:026.)

This would imply thatA/I injects in
∏

p∈Spec A(A/(p + I)), and, in particular, if all theA/(p + I) are reduced
(e.g. ifA is zero-dimensional), so isA/I.

2002-01-09:026
(This answers2002-01-08:025.)
The answer to the question asked in2002-01-08:025is “no” (thanks to Hugues Randriambololona for providing

me with a counter-example): takeA the ringC[x, y]/(xy) andI = (x− y) the ideal of the trace of the diagonal; then
the two minimal primes ofA are(x) and(y), so the intersectionI0 of thep + I is

√
I = (x, y) which is notI. And

A/I is not reduced, whereas all theA/(p + I) are. Ugh. This was utterly naïve.
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2002-01-11:027
Let A = C∗(N,R) be the ring of bounded sequences of real numbers: this can be also seen as the ringC(βN,R)

of continuous real-valued functions on the Stone-Čech compactificationβN of the set of integers. Ifp ∈ βN is a point
of said compactification, andU the ultrafilter onN to which it corresponds, there are two particularly important ideals
of A which we can associate top:
• The idealMp of all f ∈ C(βN,R) which vanish atp; in other words,Mp consists of those bounded sequences

of real numbers which, when extended in the unique possible way to a continuous real-valued function onβN,
vanish atp. This is equivalent to saying that for everyε > 0 there existsV ∈ U such that|f(n)| < ε for n ∈ V .

• The idealOp of all f ∈ C(βN,R) which vanish in the neighborhood ofp; in other words,Op consists of those
bounded sequences of real numbers which, when extended in the unique possible way to a continuous real-valued
function onβN, vanish in some neighborhood ofp. This is equivalent to saying that there existsV ∈ U such
that|f(n)| = 0 for n ∈ V .
Facts: theMp are exactly the maximal ideals ofA; the Op are prime ideal (which are not maximal except

whenp ∈ N, i.e. when the ultrafilterU to which it corresponds is principal); every prime idealp of A satisfies
Op ⊆ p ⊆ Mp for a uniquep ∈ βN (and in particular, every prime ideal ofA is contained in a unique maximal ideal,
and theOp are the minimal prime ideals ofA). Among these facts, the only non-obvious statement is that every prime
ideal is contained betweenOp andMp for a uniquep ∈ βN. To prove this, letp be a prime ideal ofA andMp a prime
ideal containingp (we do not yet assert thatMp is unique). For everyf ∈ Op we can findg 6∈ Mp such thatfg = 0
(e.g. letg = 1V wheref cancels onV ∈ U ); theng 6∈ p so we must havef ∈ p. This shows thatOp ⊆ p, and it is
then easy to see thatMp is the unique maximal ideal ofA containingp.

Let I be the principal ideal ofA generated by the sequence( 1
n ). In other words,I consists of those sequencesf

such thatg(n) = nf(n) is bounded. (Note: we simply forget about0 ∈ N; this is unimportant.) Letp ∈ βN \ N and
U the corresponding non principal ultrafilter: thenf ∈ Op + I iff g(n) = nf(n) is bounded on a certainV ∈ U .
So if f ∈ ⋂

p∈βN\N(Op + I) theng(n) = nf(n) is bounded on one some element of each ultrafilterU onN. But
theng is bounded onN: otherwise, find an infinite subsetS ⊆ N such thatg(n) → +∞ onS (the caseg(n) → −∞
is handled similarly) and consider a non principal ultrafilter concentrated onS—this gives a contradiction. Thus
I =

⋂
p∈βN\N(Op + I); and in particular,I =

⋂
p∈Spec A(p + I). Thus in this case (rather surprisingly), the answer

to the question asked in2002-01-08:025is “yes”.
Note thatI is not equal to

⋂
m∈Spm A(m + I) =

⋂
p∈βN(Mp + I): indeed, sinceI ⊆ Mp for everyp ∈ βN \ N

andMp + I = A for p ∈ N, the intersection in question is
⋂

p∈βN\NMp, which is the set of sequences tending to0 at
infinity. In particular,A is certainly not of dimension0 (anyway, we already know thatOp is prime but not maximal), a
somewhat surprising fact sinceβN is a zero-dimensional topological space—and the ring ofall real-valued sequences
is zero-dimensional (see2001-12-15:006).

Thanks to Yves de Cornulier for this example. For a more general discussion of spacesC(X,R), see Gillman &
Jerison,Rings of Continuous Functions(Springer GTM 43).

2002-01-13:028
If E is a totally ordered set, we say that a pair(U, V ) of subsets ofE is aDedekind cutof E iff U = {x ∈ E :

(∃y 6∈ V )(x < y)} andV = {y ∈ E : (∃x 6∈ U)(y > x)}. Evidently this means that wheneverx < y, we have
y ∈ U =⇒ x ∈ U andx ∈ V =⇒ y ∈ V , and consequentlyU ∩ V = ∅. The complement ofU ∪ V is either empty
or equal to a singleton{a}, in which caseU = {x ∈ E : x < a} andV = {y ∈ E : y > a}. In the latter case, we say
that the Dedekind cut isconvergentor principal, anda is its limit (note that it is uniquely determined, by definition).
The setE∗ of Dedekind cuts ofE is totally ordered by letting(U, V ) ≤ (U ′, V ′) iff U ⊆ U ′, or, equivalently,V ′ ⊆ V ;
andE naturally embeds inE∗ by sending eacha to the principal cut with limita. We say that a totally ordered setF
is Dedekind-completeiff every subset ofF has a least upper bound: this is equivalent to every subset having a greatest
lower bound, or toF being compact for the order topology, or to every Dedekind cut being principal. The setE∗ of
Dedekind cuts ofE as previously defined is Dedekind-complete for everyE, and we call it theDedekind completion
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of E. It is, in a sense which we shall not bother to make precise, the smallest Dedekind-complete totally ordered set
containingE.

Now supposeE is a totally ordered abelian group: this means thatE has a structure as a totally ordered set and
a structure as an abelian group and that the two are compatible in the sense that every translation is order-preserving.
ThenE∗ doesnot have a totally ordered abelian group structure except if it is trivial — this is because it has a least
element (as the least upper bound of the empty set) and no non trivial totally ordered abelian group has a least element.
On the other hand, we can define aDedekind-Cauchy cutof E as a Dedekind cut(U, V ) with the additional property
that for everyε > 0 of E there exists anx ∈ U and any 6∈ U with y − x = ε (or, equivalently, there existsy ∈ V and
x 6∈ V with y − x = ε). For example, each principal Dedekind cut is a Dedekind-Cauchy cut. Conversely, if every
Dedekind-Cauchy cut is principal, we say thatE is Dedekind-Cauchy-complete(or simplycomplete). In general, the
setE+ of Dedekind-Cauchy cuts ofE, with the order induced upon it by the setE∗ of all Dedekind cuts, has a natural
structure as a totally ordered abelian group, extendingE (seen as the subset of principal cuts), which is Dedekind-
Cauchy-complete. We call it theDedekind-Cauchy completionof E. It is again, in a sense which we shall not bother
to make precise, the smallest Dedekind-Cauchy-complete totally ordered abelian group containingE.

For example, the Dedekind-Cauchy completion of the setQ of rational numbers (with the usual order and the
abelian group structure given by addition) isR (with the usual order and addition). There are only two Dedekind
cuts ofQ which are not Cauchy, namely(Q,∅), which we write as+∞, and(∅,Q), which we write as−∞; so the
Dedekind completion ofQ is R̄ = R ∪ {±∞}.

If E is a totally orderedfield (which means that it is a totally ordered abelian group for addition, and the product
of two positive elements is positive), its Dedekind-Cauchy completion is again a totally ordered field. Recall that a
totally ordered fieldE is real-closediff for every polynomialf ∈ E[t], wheneverf(x) < 0 andf(y) > 0 there exists
x < a < y such thatf(a) = 0 (there are various equivalent definitions of this); every totally ordered fieldE can be
embedded in a unique smallest real-closed field containingE, called thereal closureof E. Note that neither of the two
notions of Dedekind-Cauchy completeness and real closedness implies the other (for example, the real closure ofQ,
i.e. the set of real algebraic numbers, is real-closed but not Dedekind-Cauchy-complete; and on the other hand the field
Q((t)) of Laurent series with rational coefficients in the indeterminatet, totally ordered lexicographically on powers
of t—thus makingt−1 infinitely large with respect toQ—is Dedekind-Cauchy-complete but not real-closed). On the
other hand, the Dedekind-Cauchy completion of a real-closed field is again real-closed (at least I think so; perhaps I
should check more carefully).

Now if E is a real-closed field and(U, V ) is a Dedekind cut (not necessarily Cauchy) which does not converge
(note that such cuts always exist:(E,∅) is an example), we can form a new real-closed fieldE′ containingE and in
which there existst verifying U < t < V (this meansx < t for all x in U andy > t for all y in V ; we do not assert
thatt is unique), as follows. First form the fieldE(t) of rational functions with coefficients inE on the indeterminate
t. If f(t) is a non-zero element ofE(t), it changes sign a finite number of times, and, becauseE is real-closed, at
elements ofE (either zeroes or poles); therefore there existx ∈ U andy ∈ V such that it has a constant sign on the
interval [x; y]: we letf(t) > 0 or f(t) < 0 according as this sign is positive or negative. This defines a total order
on E(t) extending that onE. And we letE′ be the real closure ofE(t) for this total order. Note that if(U, V ) was
a Dedekind-Cauchy cut,E′ is contained in the Dedekind-Cauchy completion (andt is indeed unique, as the limit of
(U, V ) in the latter).

We can then attempt to repeat the previous operation several times (even transfinitely many times). For example,
let E be a real-closed field, and defineE0 = E, and, for each ordinalα, if Eα has been defined and there exists a
Dedekind cut(U, V ) of E such that not of Eα satisfiesU < t < V , then letEα+1 = (Eα)′ for the unique Dedekind
cut of Eα extending(U, V ), and forδ a limit ordinal letEδ =

⋃
α<δ Eα (which is really an inductive limit for the

inductively defined natural embeddings). Evidently the process must stop at some point, and then we have obtained a
field E] which has “filled” every cut(U, V ) of E. Petitio principii: the fieldE] does not depend on the choices made.
How do I prove this? Then we callE] the Dedekind-Conway completion ofE. Note that there is no such thing as
a Dedekind-Conway-complete field (thus the term “completion” is inadequate), becauseE] is alwayslarger thanE.
Petitio principii secunda: iterating the operationE 7→ E] transfinitely on all ordinals, starting from the field of real
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algebraic numbers, we obtain Conway’s field of “Numbers”. This needs to be carefully checked.
Another similar process we can go through is as follows. We say that a totally ordered set (and, in particular,

a real-closed field)E is anηγ-set iff for any two subsetsA,B (possibly empty) ofE of cardinal< ℵγ such that
A < B (that is,x < y for all x ∈ A andy ∈ B) there existst ∈ E such thatA < t < B. Now start with a
real-closed fieldE, and letα be any ordinal. IfE is notηγ , there exist subsetsA,B of E with cardinal< ℵγ such
thatA < B but there is not ∈ E with A < t < B; and then the subsetsU = {x ∈ E : (∃y ∈ A)(x ≤ y)} and
V = {y ∈ E : (∃x ∈ B)(y ≥ x)} form a Dedekind cut(U, V ) of E, which is not convergent. By the operation
described above, we can construct a larger real-closed fieldE′ which adds an elementt to E satisfyingU < t < V
(and in particularA < t < B). EitherE′ is ηα, in which case we have finished, or it is not, in which case we continue,
and we repeat the process transfinitely. Eventually this must come to a stop: at least this is clear if we first fill all
the ηγ gaps inE and then in the extension thus created, and so on. Indeed, letE0 = E and for everyα let Eα+1

be real-closed field containingEα and such that for allA endB of cardinal< ℵγ in Eα there existst ∈ Eα+1 with
A < t < B and forδ a limit ordinal letEδ =

⋃
α<δ Eα; then, if κ has cofinality at leastℵγ , for anyA andB of

cardinal< ℵγ in Eκ, these already belong to someEα for α < κ, and then there existst ∈ Eα+1 ⊆ Eκ such that
A < t < B: soEκ is a real-closedηγ field. (Does the process always stop, no matter in what order the completions
are carried out?)

2002-01-13:029
It is a well-known fact that we can calculate the integral (the antiderivative, actually) of any rational function in

closed form: the result involves rational functions and logarithms—precisely, it is a linear combination of logarithms
(of translations of the indeterminate) with coefficients being rational functions (we remain voluntarily very vague as
to where the coefficients live; on the reals, for example, we would need to introduce the arctangent). This is done by
writing the rational function in partial fractions, and integrating each separately: we have

∫
dt

(t−a)k = − 1
(k−1)(t−a)k−1

for k 6= 1, and
∫

dt
t−a = log(t− a).

Every polynomial in logarithms (with coefficients being rational functions) can still be integrated in closed form:
this is done by integrating by parts as many times as necessary. For example,

∫
log t

(t−a)2 dt = − log t
t−a +

∫
dt

t(t−a) =

− log t
t−a − log t

a + log(t−a)
a . There is one exception, however: to evaluate expressions such as

∫
log t
t−a dt, we need to

introduce the dilogarithm, given bydilog′ t = − log(1−t)
t (anddilog 0 = 0). It would seem that the smallest ring

(whatever that means) which contains rational functions and is closed under integration (antiderivatives) is the ring of
polynomials (with coefficients being rational functions) over all polylogarithms of linear terms. This is already rather
complicated.

If we introduce logarithms in the denominator, things get even worse. Notably, there appears the logarithm
integral function,li t =

∫
dt

log t . Note that
∫

tk

log t dt = li tk+1 except, weirdly, whenk = −1 and then
∫

dt
t log t =

log log t.
Question: what is the smallest field containingt (and hence all rational functions) and closed under integration?

(Precondition: how to define it rigorously?) Do its elements have some canonical form? Is equality decidable (and
with what complexity) in this field?

2002-01-20:030
Let A be a finite alphabet, andA∗ the free monoid with baseA (the set of words with letters inA). Define a

partial order onA∗ by lettingu ¹ v iff we can writeu = u1 · · ·un andv = v0 · u1 · v1 · · · vn−1 · un · vn, where
u1, . . . , un andv0, . . . , vn are elements ofA∗ (possibly equal to the unit element, i.e. the empty word). In other terms,
u ¹ v iff u can be obtained by removing certain letters (anywhere) fromv; we say thatu is asubwordof v. Higman’s
lemmastates that for any infinite subsetS of A∗ there must exist distinctu, v ∈ S verifying u ¹ v. (Update: for a
proof, and a probably better statement, see2002-01-23:031.)

This leads us to consider the following game: two players take turns in selecting an element ofA∗ subject to the
condition that no subword of it have already been played, and the first player who cannot play loses. Evidently, this
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game is not really fascinating (because any player who can play can win in a single move by playing the empty word),
and it is more interesting to consider the“misère” version of it, where the empty word is forbidden (or, equivalently,
the first player who cannot playwins, the usual meaning of the word “misère” in combinatorial game theory). Call
these two games respectively thenormal Higman gameand themisère Higman game. (Update: see also2002-12-
01:047and2002-12-01:048.)

ForS a subset ofA∗, we define inductively thelengthand theGrundy function, written lg(S) andGy(S) respec-
tively, for the normal and misère versions of the Higman game (we writelgN (S) andGyN (S) for the normal versions
andlgM (S) andGyM (S) for the misère versions), as follows:
• lg(S) is the smallest ordinal (strictly) greater thanlg(S′) for everyS′ = S ∪ {w} with w a word no subword of

which belongs toS, and moreover with the constraint thatw is not the empty word in the misère case (in other
words,S′ is a legal move in the game from the positionS, that is, the position whereS is the set of words that
have been played).

• Gy(S) is the smallest ordinal different fromGy(S′) for everyS′ = S ∪ {w} as above.
Higman’s lemma assures that this inductive definition makes sense (i.e. terminates). Of course, the value oflg(S)

or Gy(S) depends heavily on the chosen alphabetA: for more clarity, we might write, e.g.lg(A,S) to emphasize on
the choice ofA, or evenlg(n, S) wheren = card A (because only the size ofA really matters).

We havelg(S) = 0 iff every word (non-empty in the misère version) has an element ofS as subword; in other
words, iff the player who just played (the “second player”) won. Of course,lgN (S) = 0 iff ε ∈ S whereε is the empty
word; andlgN (S) = 1 iff ε 6∈ S andlgM (S) = 0; and more generally, whenε 6∈ S, we havelgN (S) = 1 + lgM (S)
(proved inductively). Concerning the Grundy function, we haveGy(S) = 0 iff the second player has a winning
strategy, which consists of continuously playing so thatGy(S) = 0 after the play: these configurations form the
“kernel” of the game. Of course,GyN (S) = 0 iff ε ∈ S (as previously mentioned, if the game is not immediately
over, the first player wins by playing the empty word); and for anyS such thatε 6∈ S, we haveGyN (S) = 1+GyM (S)
(proved just as the corresponding statement forlg). So we can now concentrate on the normal version of the game,
which is more elegant than the misère version (even though the normal game itself is vacuous, its Grundy function is
of interest).

For A = ∅ (and consequentlyA∗ = {ε}), all is trivial: lgN (0, {ε}) = GyN (0, {ε}) = 0, and conse-
quently, lgN (0,∅) = GyN (0,∅) = 1, or in other wordslgM (0,∅) = GyM (0,∅) = 0. For A = {a} (so
that A∗ is isomorphic as a monoid to that of the natural numbers, written multiplicatively as powers ofa), we
havelgN (1, {ak}) = GyN (1, {ak}) = n (by induction onn), so thatlgN (1,∅) = GyN (1,∅) = ω (or in other
words lgM (1,∅) = GyM (1,∅) = ω). For card A = n > 1, things are already vastly complicated. We can
notice however that ifa 6∈ A then for anyS ⊆ A∗ we havelg(A ∪ {a}, S ∪ {a}) = lg(A,S), and similarly
Gy(A ∪ {a}, S ∪ {a}) = Gy(A,S). In particular, forA = {a, b} we havelgN (2, {a}) = GyN (2, {a}) = ω. Note
also that ifGyM (n,∅) = 0 thenGyM (n + 1,∅) > 0 becauseGyM (n + 1,∅) 6= GyM (n + 1, {a}) = GyM (n,∅)
by definition; so in at least one half of all possible alphabet lengths the first player has a winning strategy in the misère
version of the game from the canonical initial position.

Vincent Nesme observes that the Higman game with alphabetA = {a, b}, in the situation where the wordba has
already been played can be identified with Conway’s “poisoned wafer” game: start with the quarter integer planeN2

(where(k, `) ∈ N2 is identified with the wordakb`) and each player in turn chooses a remaining(k0, `0) and removes
{(k, `) : k ≥ k0 ∧ ` ≥ `0} from the plane until one cannot play (and then wins in the normal version and loses in
the misère version). Calculating the Grundy function for this game is very difficult; but the length can be determined
without too much trouble. Namely, when there remainr full lines or columns ands points not in a full line or column,
the length isω ·r+s; and so for the full plane it isω2. That is,lgN (2, {ba}) = ω2 (and of courselgM (2, {ba}) = ω2).

(Updated 2002-01-23.) It would seem thatlg(2, {a2}) = ω2 (as a variant of the poisoned wafer represented by
the wordsbkab` andbm). It then seems plausible to conjecture thatlg(2, {w} = ωl(w) wherel(w) is the length ofw
(the number of letters inw), solg(2,∅) = ωω. Do we perhaps havelgN (n + 1,∅) = ωlgN (n,∅) for everyn ∈ N?
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2002-01-23:031
Here is an understandable (but non constructive) proof of Higman’s lemma (used as the starting point of2002-

01-20:030). This is based (“instanciated” would be a better word) from a proof that Alain Frisch provided.
Recall the following definitions from2002-01-20:030: Let A be a finite alphabet, andA∗ the free monoid with

baseA (the set of words with letters inA). Define a partial order onA∗ by lettingu ¹ v iff we can writeu = u1 · · ·un

andv = v0 · u1 · v1 · · · vn−1 · un · vn, whereu1, . . . , un andv0, . . . , vn are elements ofA∗ (possibly equal to the unit
element, i.e. the empty word). In other terms,u ¹ v iff u can be obtained by removing certain letters (anywhere) from
v; we say thatu is asubwordof v.

We say that a sequence(wi) = (w0, w1, w2, . . .) of elements ofA∗ is miraculousiff there do not exist integers
i < i′ such thatwi ¹ wi′ , in other words, if no word in the sequence is a subword of some ulterior word. Higman’s
lemma states that there is no miraculous sequence, and our goal is to prove this.

(A side note: in2002-01-20:030, we made the weaker statement that ifS ⊆ A∗ is infinite then there existu, v ∈ S
distinct such thatu ¹ v. This turns out to be equivalent: indeed, if we assume the latter, and(wi) is a miraculous
sequence of elements ofA∗, by removing from the sequence every word that has some subword later in the sequence,
we clearly obtain a still infinite and still miraculous sequence, about which a contradiction can be found by applying
the assumed statement. In fact, we have tacitly used the stronger form in2002-01-20:030, and the proof was more or
less contained in our description of the game...)

Now, assume there exists a miraculous sequence, that starts, say, withw0 ∈ A∗. Remove the first letter from
w0, and see whether it still starts some miraculous sequence: and keep doing so until we find aw0 which starts a
miraculous sequence but such that after removing its first letter it no longer does. Since any word reduces to the empty
word after removal of a finite number of initial letters, and since the empty wordε cannot be part of a miraculous
sequence, we certainly can find suchw0.

Now there exists a miraculous sequence that starts with, say,(w0, w1) (wherew0 has been found above). Remov-
ing again the first letter fromw1 as much as possible, we can assume that(w0, w1) starts a miraculous sequence, but
no longer does so after removal of the first letter fromw1. And we continue in this way to form a miraculous sequence
(wi) = (w0, w1, w2, . . .) which satisfies the following minimality condition. If(vi) is a sequence obtained by remov-
ing the initial letter from some term of(wi) and altering the subsequent terms in any way whatsoever (i.e.vi = wi for
i < i0, vi0 is obtained by removing the first letter ofwi0 , andvi for i > i0 are arbitrary), then(vi) is not miraculous.

Having obtained this minimal miraculous sequence(wi) = (w0, w1, w2, . . .), we observe that an infinite number
of terms thereof must start with the same letter, saya ∈ A (becauseA is finite). Sayϕ:N → N is an increasing
function such thatwϕ(j) starts with the lettera.

We then construct(vi) as follows: remove the initial “a” from this sequence of words, keep all words before the
initial one unchanged, and delete all others. That is,vi = wi for i < i0 wherei0 = ϕ(0), andvi0+j is obtained by
removing the initial “a” from wϕ(j).

Then by minimality of(wi) the sequence(vi) is not miraculous, that is, there existj < j′ such thatvj ¹ vj′ .
But by adding possibly an initial “a” to vj′ (precisely ifj′ ≥ i0), and,only if so(precisely ifj ≥ i0), possibly also
an initial “a” to vj , we construct two termswi andwi′ of the sequence(wi) with i < i′ (viz. i = j if j < i0 and
i = ϕ(j − i0) otherwise; and similarly fori′) such thatwi ¹ wi′ . This contradicts the miraculousness of(wi).

This contradiction proves Higman’s lemma.
Note that this proof is non constructive and does not seem to give a bound on the ordinal length of the Higman

game (defined in2002-01-20:030)—though perhaps a closer study will reveal more information.

2002-02-07:032
(I am grateful to Alain Frisch for teaching me about the following concepts.)
A totally ordered setE is well-ordered iff there exist no (strictly) decreasing sequenceu0 > u1 > u2 > · · · of

elements ofE (this uses the axiom of dependent choice, but no matter: we always work with the full axiom of choice);
alternatively, iff for every sequence(ui) of elements ofE there arei < j such thatui ≤ uj (a mere restatement of the
same fact).
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When we translate these conditions to partially ordered sets, we get two different notions. Precisely, a partially
ordered setE is calledwell-foundediff there exist no (strictly) decreasing sequenceu0 > u1 > u2 > · · · of elements
of E. And a partially ordered setE is calledfairly orderediff for every sequence(ui) of elements ofE there arei < j
such thatui ≤ uj . Evidently, a fairly ordered set is well-founded, but the converse is not true (consider an infinite set
any two distinct elements of which are incomparable).

To say thatE (a partially ordered set) is well-founded is equivalent to saying that ifS ⊆ E satisfies the condition
that “if x ∈ E is such that everyy ∈ E with y < x belongs toS, thenx itself belongs toS” then S = E.
Indeed, ifE is a partially ordered set containing a decreasing sequenceu0 > u1 > u2 > · · ·, consider the set
S = {x ∈ E : ¬∃n(x ≥ un)} of elements ofE which are not greater than some term of the sequence: a moment’s
thought suffices to check that it satisfies the stated induction condition, and yetu0 6∈ S so S 6= E. Conversely, if
E is a partially ordered, andS 6= E satisfies the stated induction condition, then there existsu0 ∈ E ⊆ S (because
S 6= E) and then—by the condition in question—there existsu1 < u0 in E with u1 6∈ S, and so on, forming a strictly
decreasing sequence of elements ofE.)

Equivalently, a partially ordered set is well-founded iff every non-empty subsetS ⊆ E contains a minimal
element (in the sense that it is an element ofS for which there is no element ofS that is strictly smaller). This is easy
to see.

There are several equivalent conditions to being fairly ordered. One is this: a partially ordered setE is fairly
ordered iff every non-empty subsetS of E has a finite (strictly) positive number of minimal elements. Indeed, that it
has minimal elements follows by the above, since “fairly ordered” is stronger than “well-founded”; and if there were
an infinite number of such, then we could form a sequence of pairwise incomparable elements ofE, a contradiction. In
fact, we can also use this reasonging to see that being fairly ordered is equivalent to the (seemingly weaker) condition
of being well-founded and having no infinite antichain. Indeed, ifE is well-founded and has no infinite antichain and
(ui) is a sequence of elements ofE, the reasoning shows that there is a minimal element of the sequence, sayuk, with
greatest indexk. Now xk+1 is not minimal, so by well-foundedness it is greater than a minimal element,u`, with
` ≤ k, and we then haveu` ≤ uk+1 with ` < k + 1, as was to be shown.

Yet another equivalent condition can be described as follows. IfE is a partially ordered set, letE∗ be the set
of finite (possibly empty) subsets ofE no two elements of which are comparable. Partially orderE∗ by letting
{u1, . . . , um} ≤ {v1, . . . , vn} iff for every j ∈ {1, . . . , n} there existsi ∈ {1, . . . , m} with ui ≤ vj . For commodity,
we write the elements ofE∗ as follows: the empty set will be written> and the finite set{u1, . . . , um} will be written
u1 ∧ · · · ∧ um, with eachu ∈ E being implicitly identified with its singleton inE∗ (this identifiesE as an ordered
set and a subset ofE∗ with the induced order). We extend∧ to make it into an associative and commutative binary
operation onE∗ by declaring that ifu ≤ v are elements ofE thenu∧v = u (this suffices, given a finite set of elements
of E, to reduce it to a subset no two elements of which are comparable, thus giving an element ofE∗). Clearly, if
u andv are elements ofE∗ thenu ∧ v is the greatest lower bound ofu andv in E∗; notice however that even ifu
andv belong toE and their greatest lower bound already exists inE, it may not coincide withu ∧ v in E∗ (if does
coincide exactly whenu andv are comparable). The property is then thatE is fairly ordered iffE∗ is well-founded.
Indeed, ifE has a strictly decreasing sequence, it is also strictly decreasing inE∗; and if E has an infinite antichain
(ui) then the sequence>, u0, u0 ∧ u1, u0 ∧ u1 ∧ u2, . . . is a strictly decreasing sequence inE∗; this proves that ifE∗

is well-founded thenE is fairly ordered; conversely, ifE is fairly ordered and> > u0 > u1 > u2 > · · · is a strictly
decreasing sequence inE∗, choose for eachj ∈ N a vj in uj such which is not in anyui for i < j, then we cannot
havevi ≤ vj for i < j. This formulation means that we can also rewrite the condition of being “fairly ordered” as an
induction principle, only this time not onE but onE∗.

TODO: ranks, heights, lengths and so forth; extending orders by total orders and relation with ranks, heights,
lengths and so forth; lengths of games; products of fairly ordered sets are fairly ordered and explicit bounds on this;
applications to Higman’s lemma (see2002-01-23:031): obtaining explicit ordinal bounds.

See also2002-05-21:043for some further questions onE∗.
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2002-03-11:033
(“Tao of Topoi.”)
An (elementary)topos is a category which admits finite limits (in particular it has a terminal object> and a

binary product×; in fact, it suffices to suppose the existence of these), an internal Hom functor (this means that there
exists a functor(A,B) 7→ AB together with a natural isomorphismHom(C, AB) ∼= Hom(B×C, A)) and a subobject
classifier (this means that there exists an objectΩ and an arrowtrue:> → Ω such that every monomorphismB → A
is the pullback oftrue by a unique morphismχ:A → Ω called the characteristic morphism ofB in A).

These properties already suffice to construct arbitrary finite colimits. For example, to construct⊥ (the initial
object), using the key idea that “⊥ = ∀(p:Ω)p”, we consider the identity morphismΩ → Ω and thetrue morphism

Ω → Ω (actually the compositeΩ → > true→ Ω), and we form their product, giving a morphismΩ → Ω2, or, if
we prefer,> → Ω2×Ω. Now we have a diagonal morphismΩΩ → Ω2×Ω which is a monomorphism, so it has a
characteristic morphismΩ2×Ω → Ω, so the composition of the two morphisms we have defined gives afalse:> → Ω
which is the characteristic morphism of⊥ → >. Similarly, the motto “p ∨ q = ∀(r:Ω)((p ⇒ r) ∧ (q ⇒ r)) ⇒ r”
allows one to construct the binary coproduct.

If C is a category, we have a topos of presheaves of sets onC, i.e. contravariant functors fromC to Sets. Limits
and colimits are computed pointwise. The internal Hom takes two presheavesA andB onC to the presheafAB whose
sections(AB)(U) on an objectU of C are natural transformations fromHom(—, U) × B to A. And the subobject
classifierΩ is the presheaf whose sectionsΩ(U) on an objectU of C are sieves onU (i.e. sets of arrows with target
U closed under composition on the right when meaningful). If furtherJ is a Grothendieck topology onC (i.e. a data
giving, for every objectU of C a set of sievesJ(U) onU , called covering sieves, such that (i) the full sieve with target
U belongs toJ(U), (ii) if S belongs toJ(U) andh: V → U is any arrow thenh∗S = {f |hf ∈ S} is in J(V ), and
(iii) if S is in J(U) andR is a sieve onU such that for everyh ∈ S the sieveh∗R is covering, thenS is covering),
then we have a topos of sheaves of sets on(C, J), i.e. the full subcategory of that of presheaves consisting of those
presheavesA for which, for everyS ∈ J(U), sections ofA onU coincide exactly with matching families of sections
of A onS. The internal Hom is the same as for presheaves. And the subobject classifierΩ is the sheaf whose sections
Ω(U) on an objectU of C areJ-closed sieves onU (i.e. sievesS with targetU having the property that ifS covers
h: V → U , that is,h∗S ∈ J(V ), thenh is already inS; the converse is automatic). The inclusion functor of the
category of sheaves in the category of presheaves has a left adjoint, the “associated sheaf functor”, which is itself left
exact.

More generally, in a toposT , we say that aLawvere-Tierney topologyis a morphismj: Ω → Ω such that
(i) j ◦ true = true, (ii) j ◦ j = j and (iii) j ◦ and = and ◦ (j × j), whereand : Ω2 → Ω is the characteristic
function of (true, true):> → Ω2. In other words, for the internal logic of the topos,j is an idempotent modalizer
which preserves finite conjunctions. A monomorphismC → B is calledj-closed (resp.j-covering, sometimes called
“j-dense”) iff its characteristic functionχ:B → Ω factors throughj (in the sense thatj ◦ χ = χ; resp. satisfies
j ◦ χ = true); every monomorphismC → B factors asC → C ′ → B whereC ′ → B is j-closed andC → C ′ is
j-covering. We say that an objectA (of T ) is a sheaf (for j) iff for every j-covering monomorphismC → C ′ the
associated mapHom(C ′, A) → Hom(C, A) is bijective. Then the subcategoryShj(T ) of T consisting ofj-sheaves is
again a topos. The inclusion functorShj(T ) → T of the category ofj-sheaves in the original topos has a left adjoint,
the “associated sheaf functor”, which is itself left exact. The internal Hom functor ofShj(T ) is the same as that ofT ;
and the subobject classifierΩj of Shj(T ) is the equalizer ofj: Ω → Ω andtrue:> → Ω.

Lawvere-Tierney topologies generalize Grothendieck topologies: ifJ is a Grothendieck topology on a category
C, the morphismj: Ω → Ω in the toposSetsC

op
of presheaves onC, which takes a sieveS on U (an object ofC)

to the smallestJ-closed sievej(S) containingS (that is,j(S) is the set of all arrowsh with targetU such thath∗S
is covering), defines a Lawvere-Tierney topology. Furthermore, sheaves forj and sheaves forJ coincide, and so do
the associated sheaf functors. And every Lawvere-Tierney topology on a presheaf topos comes from a Grothendieck
topology in this sense.

TODO: examples of Lawvere-Tierney topologies (the¬¬ topology, the skyscraper topology); construction of
topoi of coalgebras on a comonad (see2002-03-12:035); factorization of geometric morphisms; examples in algebraic
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geometry. (See also2002-12-05:051and2002-12-21:053.)

2002-03-12:034
(“Mental exercises in abstract nonsense.”)
Let G be a group. Consider on the one hand the categorySets of sets and on the other hand the categoryGSets

of G-sets (sets together with an action ofG, morphisms being maps preserving the action ofG); both are topô. We
can define several functors between these categories:
• φ!: GSets → Sets, X 7→ X/G takes aG-setX to its set of orbits.
• φ∗:Sets → GSets, X 7→ X takes a setX to theG-set whose underlying set isX, with trivial action ofG.
• φ∗:GSets → Sets, X 7→ XG takes aG-setX to its set of points fixed under the action ofG.
• ψ!:Sets → GSets, X 7→ G × X takes a setX to the “freeG-set with basisX”, that is, theG-set whose

underlying set isG×X with trivial action on theX component and (left) translation action onG.
• ψ∗: GSets → Sets, X 7→ X takes aG-setX to the underlying set.
• ψ∗:Sets → GSets, X 7→ Hom(G,X) takes a setX to the (“cofree”)G-set whose underlying set is that of

maps (of sets) fromG to X and whoseG-action is given by(g · δ):h 7→ δ(hg) for g ∈ G andδ ∈ Hom(G,X).
We have some adjunction relations between these functors: namely,φ! a φ∗ a φ∗ andψ! a ψ∗ a ψ∗; of course,

composing them, we get some further adjunctionsφ∗φ! a φ∗φ∗ andψ!φ! a φ∗ψ∗ andψ!ψ
∗ a ψ∗ψ∗ (plus the trivial

adjunction on the identity functor onSets, and the usualG×— a Hom(G, —) in Sets).
Note that:

• φ! is neither full nor faithful. It preserves all colimits because it has a right adjoint (in particular, it is right exact,
that is, it preserves finite colimits). However,φ! does not preserve limits: in fact, it does not even preserve binary
products.

• φ∗ is full and faithful. It preserves all limits and colimits because it has both left and right adjoints.
• φ∗ is neither full nor faithful (note that it superficiallyseemsto be full, but in factHomG Sets(G,∅) is empty

whereasHomSets(φ∗G,φ∗∅) = HomSets(∅,∅) is not, if G has the action by (left) translation on itself). It
preserves all limits because it has a left adjoint (in particular, it is left exact, that is, it preserves finite limits).
Further,φ∗ does preserve coproducts; however, it does not preserve (even finite) coequalizers (hence not all finite
limits).

• ψ! is faithful but not full. It preserves all colimits because it has a right adjoint (in particular, it is right exact,
that is, it preserves finite colimits). However,ψ! does not preserve limits: in fact, it does not even preserve binary
products.

• ψ∗ is full and faithful. It preserves all limits and colimits because it has both left and right adjoints.
• ψ∗ is faithful but not full. It preserves all limits because it has a left adjoint (in particular, it is left exact, that is, it

preserves finite limits). However,φ∗ does preserve colimits: in fact, it does not even preserve binary coproducts.
(In the language of topoi, the pairs(φ∗, φ∗) and(ψ∗, ψ∗) (of adjoint functors, where the left one is left exact) mean

that we have twogeometric morphisms, φ: GSets → Sets andψ:Sets → GSets, both of which aresurjections,
which means that the inverse image functors (φ∗, ψ∗) are faithful.)

Concerning the non trivial units and coünits of the adjunctions, we have:
• η′φ: 1G Sets → φ∗φ!, the unit ofφ! a φ∗, maps aG-setX to its set of orbitsX/G with trivial action ofG through

the canonical surjection.
• εφ: φ∗φ∗ → 1G Sets, the coünit ofφ∗ a φ∗, includes the set of fixed points of aG-setX in X.
• η′ψ: 1Sets → ψ∗ψ!, the unit ofψ! a ψ∗, maps a setX to the setG×X by sendingx to (1, x).
• εψ:ψ∗ψ∗ → 1Sets, the coünit ofψ∗ a ψ∗, sendsHom(G,X) to X by applying on1 ∈ G.

We now pause for a moment to speak of monads and comonads in the next note.

2002-03-12:035
“Recall” that amonadon a categoryC is a triple(T, η, µ), whereT :C → C is an endofunctor, andη: 1 → T

andµ:T 2 → T are natural transformations satisfying (i)µ ◦ ηT = 1T = µ ◦ (Tη) and (ii) µ ◦ µT = µ ◦ (Tµ).
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Dually, acomonadis a triple(V, ε, ν), whereV :C → C is an endofunctor, andε:V → 1 andν:V → V 2 are natural
transformations satisfying (i)εV ◦ ν = 1V = (V ε) ◦ ν and (ii)νV ◦ ν = (V ν) ◦ ν.

Every pair of adjoint functorsF a U (with, say,F :A → B andU :B → A), determines a monad(UF, η, µ)
on A, whereη: 1A → UF is the unit of the adjunction, andµ:UFUF → UF is given byUεF (whereε is the
coünit). Dually, the same pairF a U determines a comonad(FU, ε, ν) onB, whereε:FU → 1B is the coünit of the
adjunction, andν:FU → FUFU is FηU .

“Recall” further that analgebraon a monad(T, η, µ) (on a categoryC) is a morphismλ:TA → A, with A an
object ofC, such that (i)λ ◦ ηA = 1A and (ii) λ ◦ µA = λ ◦ (Tλ). Algebras on a monad(T, η, µ) form a category
where morphisms fromλ:TA → A to λ′: TA′ → A′ are morphismsα: A → A′ (in C) such thatλ′ ◦ (Tα) = α ◦ λ:
this category is called theEilenberg-Moore categoryof the monad,CT .

Given a monad(T, η, µ) on a categoryC, andCT its Eilenberg-Moore category, we have two important functors:
U :CT → C which takes an algebraλ:TA → A to the objectA of C, andF :C → CT which takes an objectA of
C to the “free algebra”µA: T 2A → A; these functors are adjointF a U and we haveUF = T with unit η and with
µ = UεF whereε is the coünit. (But note that ifT is given from a functor adjunction, we may not find the functors
we started with: the Eilenberg-Moore category of a monad is only one possible resolution of the monad as a pair of
adjoint functors, universal in a certain sense, whereas the Kleisli category is coüniversal. A functorU of the form—up
to an equivalence of categories— of the forgetful functor from an Eilenberg-Moore category is said to bemonadic;
this implies that it has a left adjoint.)

Dually, given a comonad(V, ε, ν), we have the notion of acoälgebra, which is a morphismγ: A → V A such that
(i) εA ◦ γ = 1A and (ii)νA ◦ γ = (V γ) ◦ γ. Coälgebras on a comonad(V, ε, ν) also form a category with the obvious
morphisms, the Eilenberg-Moore categoryCV of the comonad. And again, the forgetful functorU :CV → C and
the “cofree coälgebra” functorH:C → CV are adjoint in the senseU a H, with UH = V , with coünitε and with
ν = UηH whereη is the unit.

If (T, η, µ) is a monad (on a categoryC), and the functorT has a right adjointV , then the natural transformations
ε: V → 1 and ν: V → V 2 deduced fromη: 1 → T and µ: T 2 → T by adjunction (and Yoneda — this could
use some more explaining) make(V, ε, ν) into a comonad. Furthermore, the (Eilenberg-Moore) categories ofT -
algebras andV -coälgebras are isomorphic, in a way that commutes with the forgetful functor, by sending aT -algebra
λ: TA → A to the coälgebraγ: A → V A deduced by adjunction. And the forgetful functorU :CT ∼= CV → C has
a both a left adjoint (the “free (co)algebra” functorF :C → CT ) and a right adjoint (the “cofree (co)algebra” functor
H:C → CV ).

Some examples: ifU is the forgetful functor from the category of groups to the category of sets, it has a left
adjointF (the free group functor), and the monadT = UF takes a set to the set of elements of the free group with that
basis, whereasη selects the basis elements, andµ performs a “removing of quotes”; a(T, η, µ)-algebra is simply a
group, that is, the forgetful functorU we started with is monadic. (Indeed, in sufficiently abstract terms, an “algebraic
structure” is a monadic functor from a category to the category of sets...)

We can also takeU to be the inclusion functor from the category of abelian groups to the category of groups:
it has a left adjointF , which takes a groupG to its abelianizationG/DG (whereDG is the derived group, i.e. the
(normal) subgroup generated by commutators) seen as an abelian group. Then the monadT = UF takesG to G/DG
(this time seen as a not necessarily abelian group which happens to be abelian), the unitη is the canonical surjection
G ³ G/DG andµ is the identity. A(T, η, µ)-algebra is a groupG together with a morphismG/DG → G which,
when composedon the rightwith the canonical surjection gives the identity onG: but there is no other way for that
than forG to be abelian. SoU again is monadic.

The example ofG-sets (see2002-03-12:034) illustrates the situation where we have an adjoint monad and
comonad: the forgetful functorψ∗ taking aG-set to its underlying set has both a left adjoint, the “freeG-set functor”
ψ! which takes a setX to G×X and a right adjoint, the “cofreeG-set functor”ψ∗ which takes a setX to Hom(G,X).
So the monadψ∗ψ! is left adjoint to the comonadψ∗ψ∗, andψ∗ψ!-algebras are the same thing asψ∗ψ!-coälgebras;
and it turns out that both are the same thing asG-sets, soψ∗ is both monadic and comonadic.

If X is a topological space, let∆ be the functor taking a set to the sheaf of locally constant functions in that
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set, and letΓ be the functor taking a sheaf onX to its set of global sections: we have an adjunction∆ a Γ. The
coünit ε on a sheafF is the map of sheaves∆ΓF → F which embeds locally constant sections in all sections, and
ν: ∆ΓF → ∆Γ∆ΓF is the identity. A coälgebra is a sheafF on X together with a mapγ:F → ∆ΓF which
composed (on theleft) with εF :∆ΓF → F gives the identity, in other words it is (isomorphic to) a constant sheaf (a
sheaf in the image of∆). So the functor∆ is comonadic.

Slogan: monads are important, because many interesting categories can be realized as Eilenberg-Moore categories
of monads; comonads are important because, ifT is a topos, and(V, ε, ν) is a comonad onT such thatV is left-exact
(which is the case in particular whenV has a right adjoint, which is then a monad as we have seen) then the Eilenberg-
Moore category of coälgebras onV is itself a topos (and, furthermore, this construction and that of sheaves on a
Lawvere-Tierney topology, see2002-03-11:033and2002-12-05:051, are “essentially the only possible constructions
of topoi”, in the intriguing sense that every geometric morphism factors essentially uniquely and up to isomorphism
as a composition of the two).

2002-03-16:036
(Updated 2002-03-17, to reformulate over an arbitrary base ringk, and to add the word “reduced” here or there.

Thanks to Joël Riou and Olivier Wittenberg for various remarks and explanations.)
In notes2002-01-03:023through2002-01-11:027I considerered the question of constructing, for a given ring

A, a (reduced?) zero-dimensional ringKA (i.e. every prime ideal ofKA is maximal) that would serve as a “zero-
dimensional skeleton” ofA (probably the universal morphism fromA to a (reduced?) zero-dimensional ring) or
something of the kind.

Let k be a (commutative) ring andAffScmk be the category of affinek-schemes (opposite to the category of
(commutative)k-algebras). Define a topology onAffScmk by declaring a family of arrowsSpec Bi → Spec A to
be covering iff every prime idealp ∈ Spec A of A is the (inverse) image of some prime idealq ∈ Spec Bi of some
Bi (by the arrowSpec Bi → Spec A, i.e. A → Bi). (Sanity check: does this, indeed, constitute a Grothendieck
topology—see, e.g.,2002-03-11:033for a definition?)

It appearsthat this topology coincides with the¬¬ topology (topology in the sense of Lawvere & Tierney) on
the Zariski topos. Is this correct?

Clearly, not every representable presheaf onAffScmk is a sheaf for the topology we have defined. E.g.,Spec k[t]
is not a sheaf, for the morphismSpec k ] Spec k[u±1] → Spec k[u] (whereSpec k maps to the origin ofSpec k[u]
andSpec k[u±1] maps as the complement of the origin) is covering, but it does not descend sections ofSpec k[t]. Is
this topology indeedstrictly finer (i.e. having strictly more covers than) the canonical topology onAffScmk?

It vaguely seems that (the presheaf represented by) an affine schemeSpec A is a sheaf (for the topology in
question) iff thek-algebraA is reduced and zero-dimensional: is this true (at least ifk is an algebraically closed field,
or giving some definition of zero-dimension like “having zero-dimensional geometrical fibers”)? (Incidentally, is it
true that ifA → B is a morphism of (commutative)k-algebras, withA reduced and zero-dimensional, not necessarily
noetherian, then it (the morphism) is flat?) If so, is it true that the associated sheaf (sheafification) of a representable
presheaf is again representable? In that case we can write itSpec KA and call it the zero-dimensional skeleton of
Spec A.

2002-03-17:037
(This expands2002-03-16:036.)
Let k be a (commutative) ring, andAffScmk the category of affinek-schemes (opposite to the category of

(commutative)k-algebras). Recall that a morphismSpec B → Spec A is said to besurjectiveiff for every prime ideal
p of A there exists a prime idealq of B such thatp is the inverse image ofq by the map of ringsA → B; equivalently,
it means that for every fieldK and every morphismSpec K → Spec A there exists a field extensionL of K and a
morphismSpec L → Spec B so that the obvious diagram commutes (EGA, I.3.5.3); surjective morphisms are stable
under base change (id, I.3.5.2). Say that a familySpec Bi → Spec A of morphisms (inAffScmk) is surjective iff
Spec

∏
i Bi → Spec A is surjective (note: this is equivalent to the map of schemes

⊎
i Spec Bi → Spec A being
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surjective—making use, of course, of the fact that the targetSpec A is affine). We can define a topology onAffScmk

by saying thatS ∈ J(Spec A) (a sieveS covers its targetSpec A) iff the family S of morphisms (with targetSpec A)
is surjective: call this the surjective topology onAffScmk. Joël Riou notes that it might be of use to add some
hypothesis such as “(locally?) of finite presentation”, but let us try to do without (the essential idea being that a
morphismSpec B → Spec A between affinek-schemes is, in any case, affine, and therefore quasi-compact).

We wonder for whichk-algebrasT the representable presheafSpec T :AffScmk → Sets, Spec A 7→ Hom(T,
A) is a sheaf for the surjective topology.

Suppose thatA is such ak-algebra, that (the presheaf represented by)Spec A is a sheaf, and letx ∈ A. We
considerB = A ⊗k A and the two morphismsϕ1, ϕ2:A ⇒ B such thatϕ1(t) = t ⊗ 1 andϕ2(t) = 1 ⊗ t. We let
B1 = B/(x⊗1) be the quotient ofB by the ideal generated byx⊗1 = ϕ1(x), and we letB2 = B(x⊗1) = A(x)⊗k A
be the quotient ring makingx⊗ 1 invertible inB; call ι: B ×B1 ×B2 the canonical map (canonical surjectionι1 on
one component, canonical mapι2 on the other). It is easy to see thatSpec B1 ]Spec B2 → Spec B (the map of affine
schemes associated toι) is surjective. By the hypothesis onA (and becauseB1⊗B B2 = 0), every mapA → B1×B2

must factor throughι. Consider in particular the mapψ: A → B1 ×B2 given byψ(t) = (ι1(ϕ1(t)), ι2(ϕ2(t))): there
must existψ̃:A → B such thatψ = ι ◦ ψ̃. Now ψ(x) = (0, 1 ⊗ x). So ψ̃(x) must be in the ideal generated by
x ⊗ 1, sayψ̃(x) = z(x ⊗ 1) with z ∈ B, and we havez(x ⊗ 1) = 1 ⊗ x in B2 = B(x⊗1). Therefore, there exists
z ∈ B = A⊗k A which goes tox−1 ⊗ x ∈ B(x⊗1) = A(x) ⊗k A.

So, question: what does it tell us on an elementx of a k-algebraA thatx−1 ⊗ x ∈ A(x) ⊗k A belongs to the
image ofA⊗k A? What does it tell us on ak-algebraA that every elementx satisfies that property?

A simpler question: what does it tell us on an elementx of a k-algebraA thatx−1 ∈ A(x) belongs to the image
of A? What does it tell us an ak-algebraA that every element satisfies that property? Here we can probably answer
that: the image ofA in A(x) containsx−1 iff it contains everything, i.e. iff the mapA → A(x) is surjective, which
means that the open setSpec A(x) ½ Spec A is closed, and thenA is the product of two rings andx is equal to a
nilpotent plus the product of an invertible element by an idempotent; and conversely. And very probably if this is true
of everyx thenA is zero-dimensional (compare2002-01-07:024).

At least if k is a field andA an integral domain, we can probably answer the more complicated question: for
A ⊗k A injects inA(x) ⊗k A (as soon asx is not zero) by the canonical map, and the condition implies thatx is
invertible; so if it holds for everyx, we see thatA is a field.

2002-03-18:038
We resolve the question asked in2002-01-07:024.
For any ringA, we have mentioned in2001-12-30:022that the boolean algebraHom(Z2, A) of idempotents of

A is isomorphic bye 7→ D(e) to the boolean algebra of clopen subsets ofSpec A. Indeed, it is quite clear that ife
is idempotent thenD(e) is clopen; on the other hand, ifU is a clopen subset ofSpec A, then (i) its structure as an
open subscheme is the same as its (thickest!) structure as a closed subscheme, and (ii) it is therefore an affine open
subscheme and so is its complement, at which point it is easy to see thatA is the product of two rings and gives rise to
two complementary idempotents, etc.

On the other hand, ifA is a reduced zero-dimensional ring, then for any prime idealm ∈ Spec A of A (m is
maximal, by hypothesis), the localizationAm of A atm is a reduced zero-dimensional local ring,thusa field (because
it has a unique prime ideal, which is necessarily0 because the ring is reduced). So the canonical mapAm → A/m is
an isomorphism. In particular, iff ∈ m, it goes to0 in Am, so there exists an element, say,g 6∈ m, such thatfg = 0;
and thenm ∈ D(g) ⊆ V (f). This shows thatV (f) ⊆ Spec A is open for anyf ∈ A (and it is also closed by the very
definition of being closed).

The two preceding paragraphs mean that ifA is a reduced zero-dimensional ring, for anyf ∈ A we can define
an idempotente with D(e) = V (f); and thenf + e is invertible inA (because it belongs to no maximal ideal) and
fe = 0; sof = (f + e)(1− e) is the product of an invertiblef + e by an idempotent1− e.

Together with what was already proven in2002-01-07:024, we can therefore state that a ring is reduced zero-
dimensionaliff every element is the product of an invertible by an idempotent.

22



2002-03-24:039
(“Tao of Topoi in Algebraic Geometry.”)
Let k be any (commutative) ring. LetAffScmk be the category of affinek-schemes (opposite to the category of

(commutative)k-algebras). We can define several important Grothendieck topologies onAffScmk:
• The Zariski topology. We say that ak-algebraA is covered by localizationsA(f1), . . . , A(fn) of A (whereA(fi)

is obtained by invertingfi in A) iff the elementsf1, . . . , fn of A generate the unit ideal. More generally, we
say thatA is covered by anA-algebraB for the Zariski topology iff there exist elementsfi of A generating the
unit ideal and such that the sumA → ⊕

i A(fi) of the localization maps factors asA → B → ⊕
i A(fi) where

A → B is the given map; and we say thatA is covered byA-algebras(Bj)j∈J (not necessarily in finite number,
although a finite subset will always suffice) for the Zariski topology iff it is covered by

⊕
j Bj .

• The étale topology. We say that anA-algebraB is faithfully étale iff the mapA → B is finitely presented (that is,
B is the quotient of someA[t1, . . . , tn] by a finitely generated ideal of it), formally étale (that is, for anyA-algebra
C and idealI of C such thatI2 = 0, the canonical map fromHomA(B, C) to HomA(B, C/I) is bijective) and
faithfully flat (“flat” is automatic by étaleness, so we are just stating that for any non-zeroA-moduleM , the
B-moduleM ⊗A B is non-zero; and actually it suffices to check this ifM is an integral domain quotient ofA).
And we say that ak-algebraA is covered by anA-algebraB (resp. byA-algebras(Bj)j∈J , where, again, a finite
number will actually suffice) for the étale topology iff there existsB → B′ such that the compositeA → B → B′

is faithfully étale (resp. iffA is covered by
⊕

j Bj in that sense).
• The fppf (faithfully flat and finitely presented) topology. We say that a anA-algebraB is fppf iff B is finitely

presented and faithfully flat overA (i.e. for every injective homomorphism ofA-modulesM ′ → M the ho-
momorphismM ′ ⊗A B → M ⊗A B obtained by tensoring withB overA is still injective). And we say that
a k-algebraA is covered by anA-algebraB (resp. byA-algebras(Bj)j∈J , where, again, a finite number will
actually suffice) for the fppf topology iff there existsB → B′ such that the compositeA → B → B′ is fppf
(resp. iffA is covered by

⊕
j Bj in that sense).

• The fp[qc] (faithfully flat [and quasi-compact—but in the case of affine schemes the latter is automatic]). We say
that ak-algebraA is covered by anA-algebraB (resp. byA-algebras(Bj)j∈J , where, again, a finite number will
actually suffice) for the fp[qc] topology iffB is (“fp[qc]”) faithfully flat as anA-algebra (resp. iffA is covered
by

⊕
j Bj in that sense).

(Of course, the above is formulated withk-algebras by abuse of language and we should reverse all arrows to get
definitions onAffScmk.)

For example, the map fromA2
k = Spec k[x, y] to A1

k = Spec k[x] obtained by injectingk[x] in k[x, y], is
faithfully flat and finitely presented, so it is covering for the fpqc and fppf topologies. It is certainly not étale, but it is
still covering for the étale topology (the whole point of this example, indeed) because it has a section; indeed, the fact
that it has a section shows that it is covering foranyGrothendieck topology.

A presheaf(of sets on the category of affine schemes)F is a contravariant functor fromAffScmk to Sets
(which can be, equivalently, considered as a covariant functor fromk-algebras to sets); it is asheaf for one of the
above-defined topologies iff for every covering of ak-algebraA by A-algebras(Bj)j∈J (for the topology in question)
the diagram of setsF(A) → ∏

j F(Bj) ⇒
∏

j,j′ F(Bj ⊗A Bj′), with the obvious maps, is exact (i.e. the first arrow
is injective and its image is the set of points where the two latter coincide).

(...to be continued...)

2002-03-31:040
(Many thanks to Joël Bellaïche and Yves de Cornulier for various results in this note.)
Let X be any set. IfA is a (commutative) ring, we writeA(X) =

⊕
x∈X A the sum ofcard(X) copies ofA as

an A-module, andAX =
∏

x∈X A the product ofcard(X) copies ofA (ditto), which containsA(X) and is also its
dual(A(X))∗. We have a short exact sequence0 → A(X) → AX → AX/A(X) → 0 of A-modules. This gives us a
sequence0 → (AX/A(X))∗ → (AX)∗ → AX → Ext1(AX/A(X), A) → Ext1(AX , A) → 0 (the next term would
beExt1(A(X), A), but this vanishes asA(X) is free by definition). Further note that the dualityA(X)× (A(X))∗ → A,
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which is nondegenerate on the left, when read asA(X) × AX → A, implies thatA(X) injects in(AX)∗ in a way that
is right inverse to the arrow(AX)∗ → AX defined above; so the image of(AX)∗ in AX by the latter arrow contains,
at least,A(X).

Fact: if A = Z is the ring of integers, then the image of(ZX)∗ → ZX is preciselyZ(X), which we have just
seen it must contain. In other words, and expliciting the arrow(ZX)∗ → ZX , we must prove that if̀ is a linear form
onZX , andδx (for x ∈ X) the element ofZX defined byδx(x) = 1 andδx(y) = 0 if y 6= x, then there are only
finitely manyx ∈ X such that̀ (δx) 6= 0. Assume on the contrary that there are infinitely many suchx. Then we
might as well assume thatX = N and thatci 6= 0 for eachi ∈ N, whereci = `(δi); in fact, we might as well assume
that ci > 0 for eachi. Now, for eachi ∈ N, let bi ∈ N be such that2bi > 2ci, and consider the elementu ∈ ZN
given by the sequence(1, 2b0 , 2b0+b1 , 2b0+b1+b2 , . . .). Now sinceu− δ0 is divisible by2b0 , the integer̀ (u)− c0 must
also be divisble by2b0 , or, in other terms,̀(u) has the sameb0 low-order bits asc0. Similarly, `(u)− (c0 + c12b0) is
divisible by2b0+b1 , so the nextb1 low-order bits of̀ (u) are theb1 low-order bits ofc1. And so on. If`(u) ≥ 0, we
have finished, because all bits are0 after a certain rank, so allci are zero fori sufficiently large. If`(u) < 0 then all
bits are1 after a certain rank, soci ≥ 2bi−1 for i sufficiently large—but we have assumed the contrary, viz.2bi > 2ci.
This completes the proof.

The same statement definitely doesnot hold over an arbitrary ringA. In fact, if A = k is a field, then the map
(kX)∗ → kX is clearly always surjective. The proof appears to work with the following hypothesis onA: there exists
an elementp ∈ A (namely2 in the above proof) such that multiplication byp is injective (i.e.p is “regular”) and such
that

⋂
b∈N pbA = 0; the arguments with inequalities are probably red herrings, but this requires a little more thought.

If there exists a non principalcard(A)+-complete ultrafilterU onX, in other words if there exists a measurable
cardinalκ such thatcard(A) < κ ≤ card(X), then(AX/A(X))∗ is not zero. Indeed, ifu ∈ AX , since the union of all
theu−1(a), for a ranging overA, is X (and therefore belongs toU ), by card(A)+-completeness, there existsa ∈ A
such thatu−1(a) ∈ U , and thisa is necessarily unique since fora 6= a′ the setsu−1(a) andu−1(a′) are disjoint (so
they cannot both be in the ultrafilter): call sucha the limit of u alongU . Taking the limit is manifestly anA-linear
map, and, sinceU is non principal, depends only on the class ofu in AX/A(X). SoU defines a non-zero element
of (AX/A(X))∗ (non-zero because the diagonal mapA → AX/A(X) is a section of it: that is, the limit of a constant
function is that constant value).

Fact: if A = Z is the ring of integers, then(ZN/Z(N))∗ = 0. Indeed, assume on the contrary that there exists a
linear form` onZN that vanishes onZ(N). Say that an elementu of ZN is 2N -divisible iff 2n|u(n) for everyn ∈ N;
we then havè(u) = 0 because the value of` on u is the same as that on the sequence obtained by replacing the first
valuesN of u by zeroes (for anyN ), which must then be divisible by2N—for anyN—and this is possible only if
`(u) = 0. But similarly,`(u) = 0 if u is 3N -divisible, with the obvious meaning. However, any element ofZN can be
written as the sum of a2N -divisible element and a3N -divisible one, using a Bézout relation between2n and3n. So
`(u) = 0 for anyu ∈ ZN, which was to be proven.

Again, the statement definitely doesnot generalize to an arbitrary ringA, because ifA = k is a field the vector
spacekN/k(N) is non trivial, so its dual also is. The proof appears to work with the following hypothesis onA: there
exists an elementp ∈ A (namely2 in the above proof) such that multiplication byp is injective (i.e.p is “regular”)
and such that

⋂
b∈N pbA = 0, and an elementq ∈ A (namely3 in the above proof) verifying the same hypotheses, and

such thatp andq generate the unit ideal ofA.
If the ring A satisfies the hypothesis that(AN)∗ = A(N) (that is, the image of(AN)∗ in AN is insideA(N) and

(AN/A(N))∗ = 0), then it satisfies(AX/A(X))∗ = 0 for any setX of cardinality less than the first measurable cardinal
(resp. any set if measurable cardinals do not exist). Indeed, assume` is a linear form onAX that vanishes onA(X).
Consider the setU of subsetsU ⊆ X of X such that̀ is identically zero onAX\U (considered as a subset ofAX

by extending with zeroes onU ). It is clear thatU is a filter onX. It is not always true that it is a ultrafilter (think
` = limU1 + limU2 with U1, U2 two σ-complete non principal ultrafilters onX), but it is always true that there exists
Y ⊆ X, with (X \Y ) 6∈ U , such that the restrictionU |Y of U to Y is a ultrafilter, where the “restriction” in question
is as follows: it is the set ofU ⊆ Y such thatU ∪ (X \ Y ) ∈ U (things are much more natural in terms of ideals
than in terms of filters, but tradition demands filters). For if it were otherwise, we could writeX = U0 ∪ U ′

0 with
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U0, U
′
0 6∈ U andU0 ∩ U ′

0 = ∅, and then consideringU |U ′0 we could writeU ′
0 = U1 ∪ U ′

1 with U1, U
′
1 6∈ U |U ′0 and

U1∩U ′
1 = ∅, and so on. This implies that there are elementsu0, u1, u2, . . . of AX with come fromAU0 , AU1 , AU2 , . . .

respectively, and which satisfỳ(ui) 6= 0 for all i. But these can easily be used to construct an element of(AN)∗ which
does not come fromA(N), something we assumed does not exist. So we can findY as explained, and we might as well
assume thatY = X and therefore thatU is a ultrafilter onX. It is non principal becausèvanishes onA(X). And
it is σ-complete because otherwise we can find elementsu0, u1, u2, . . . of AX which come fromAF0 , AF1 , AF2 , . . .
with F0, F1, F2, . . . disjoint, such that̀(ui) = 0 for all i but the functionu extendingui on eachFi and0 elsewhere
satisfies̀ (u) 6= 0; and these data can be used to construct a non-zero element of(AN/A(N))∗, something we assumed
does not exist. So finally we have aσ-complete non principal ultrafilterU onX, andcard(X) ≥ κ for κ the smallest
measurable cardinal.

There is much mystery in this whole matter. Note that we have two different conditions (on a ringA and a setX):
first, that the image of(AX)∗ → AX falls insideA(X) (call this the “finiteness writing condition”), in other words
given ` ∈ (AX)∗, only finitely many of thecx = `(δx) are non-zero; and second, that the map(AX)∗ → AX in
question is injective (call this the “uniqueness writing condition”), in other words thecx above suffice to determinè.
The “uniqueness writing condition” can fail in the presence of measurable cardinals; the “finiteness writing condition”
on the other hand requires very little on the ringA (and nothing at all onX). But, strangely, to prove that the
“uniqueness writing condition” holds for small enoughX we apparently need not only the condition in question for
X = N (and for the given ringA) but also the “finiteness writing condition” forX = N. We can wonder, for example,
whether there actually exists a ringA such that the uniqueness writing condition holds forX = N but not for some
largerX still smaller than the first measurable cardinal, or whether this apparent problem is just a weird artifact of our
proof technique.

2002-04-06:041
The claim made in2001-12-21:014that, if K is any field andB a faithfully flat (i.e. non-zero)K-algebra, an

elementx of B such thatx ⊗ 1 − 1 ⊗ x ∈ B ⊗K B is nilpotent necessarily comes fromK, is false. Indeed, ifK is
a non perfect field, say of characteristicp, andKp−∞ its perfect closure, thenKp−∞ is faithfully flat as aK-algebra,
and foreveryx ∈ Kp−∞ the elementx ⊗ 1 − 1 ⊗ x ∈ Kp−∞ ⊗K Kp−∞ is nilpotent. (And this is not a problem of
the perfect closure being not of finite type overK, because a similar statement holds at finite levels.)

What is true, however, is that the elements obtained in this way are precisely the elements of the perfect closure of
K; that is, ifK is any field andB a faithfully flatK-algebra, an elementx of B is such thatx⊗1−1⊗x ∈ B⊗K B is
nilpotent iff x belongs to some purely inseparable algebraic extension field ofK included inB. Indeed, the statement
over algebraically closed fields was (it seems correctly) proved in2001-12-21:014, and the more general statement
hold by Galois descent. I will try to give a clear and irreproachable proof later on.

But it certainly seems that the hopes of2001-12-21:014were hasty, and the question demandes more thought.

2002-05-02:042
Let ∆s = {(x0, . . . , xs) ∈ Rs+1 : x0 ≥ 0, . . . , xs ≥ 0, x0 + · · · + xs = 1} be the simplex of dimensions, and

let µ be the measure on∆s given bydµ = s! dx1 ∧ · · · ∧ dxs. Then we have
∫

∆s

xk0
0 · · ·xks

s dµ =
k0! · · · ks! s!

(k0 + · · ·+ ks + s)!

In particular,µ(∆s) = 1 (we say thatµ is the uniform probability measure on the simplex∆s).
Here is a sample application of this formula. Givenx = (x0, . . . , xs) ∈ ∆s, we considerθ a uniformly distributed

random variable in[0; 1] and we leti be the index such thatx0 + · · · + xi−1 < θ < x0 + · · ·+ xi (for almost every
value ofθ this is well-defined); in other words,i = 0 with probability x0, i = 1 with probability x1 and so on.
We actually considerN independent variablesθ1, . . . , θN and we letM0, . . . , Ms (with M0 + · · · + Ms = N ) be
the count of the correspondingi1, . . . , iN which are equal to0, . . . , s respectively. Lety = (y0, . . . , ys) be defined
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as(M0/N, . . . , Ms/N): for a givenN , the random variabley is distributed over the grid of points of denominator
(dividing) N in ∆s with a probability law that follows the multinomial distribution, namely

Pr
(
(y0, . . . , ys) = (M0/N, . . . , Ms/N)

)
=

N !
M0! · · ·Ms!

xM0
0 · · ·xMs

s

Note thatE(y) = x (expectation ofy), andV(yi) = xi(1− xi)/
√

N (variance ofyi: eachyi is a binomial variable)
andCov(yi, yj) = −xixj/

√
N (covariance ofyi andyj for i 6= j).

Now let x be uniformly distributed on∆s (according to the lawµ we have defined above), and definey in the
same way as previously, for variablesθ1, . . . , θN independent ofx. In Bayesian way, fixy = (M0/N, . . . , Ms/N)
and considerx as a random variable for this new conditioning: we have

Pr
(
(x0, . . . , xs) = (x0, . . . , xs)

)
=

(N + s)!
M0! · · ·Ms! s!

xM0
0 · · ·xMs

s

We then have, according to the integration formula given at the start, thatE(xi) = (Mi + 1)/(N + s + 1)
(add a fictitious1 to every measure), andV(xi) = ((Mi + 1)(N − Mi + s))/((N + s + 1)2(N + s + 2)) and
Cov(xi,xj) = −((Mi + 1)(Mj + 1))/((N + s + 1)2(N + s + 2)).

2002-05-21:043
(This pursues some ideas from2002-02-07:032.)
If E is a partially ordered set, we letE∗ be the set of finite antichains ofE, i.e. finite subsets ofE no two

elements of which are comparable, and we partially orderE∗ by letting{u1, . . . , um} ≤ {v1, . . . , vn} iff for every
j ∈ {1, . . . , n} there existsi ∈ {1, . . . , m} with ui ≤ vj . We embedE (as a partially ordered set) inE∗ by sendingu
to {u}, and we shall identifyE with its imagevia this embedding. The operation sending a finite tuple(u1, . . . , um)
of elements ofE to its set of minimal elements, seen as an element ofE∗, defines a mapEm → E∗, which factors
through the action of the symmetric groupSm on Em and form = 1 gives the previously mentioned embedding
E → E∗; we writeu1 ∧ · · · ∧ um for the image of(u1, . . . , um) by this map, and> for the image of the empty tuple
(in other words, the empty set, seen as an element ofE∗). Thus, every element ofE∗ can be writtenu1 ∧ · · · ∧ um

for someu1, . . . , um ∈ E, and this expression is unique if we impose theui to be pairwise incomparable, and we
can always reduce to this form by removing non-minimal elements. Further, the∧ operation extends uniquely to a
commutative and associative operation onE∗, having> as neutral element, which is simply taking the greatest lower
bound of a finite set.

We pointed out in2002-02-07:032thatE is fairly ordered (i.e. well-founded and without infinite antichains) iff
E∗ is well-founded. (Being well-founded means satsfying the DCC: every descending chain of elements is stationary.)

The surprise is that it is not always true in this case thatE∗ is fairly ordered: it may have infinite antichains. I
thank Larry Hammick for raising the question and for pointing out that my initial reaction was wrong; the following
counterexample can be found in Diane Maclagan, « Antichains of Monomial Ideals are Finite »,Proceedings of the
AMS, 129 (2001), no. 6, 1609–1615, alsomath.CO/9909168 (see example 4.1), and was initially published in
D. Duffus, M. Pouzet & I. Rival, « Complete ordered sets with no infinite antichains »,Discrete Math, 35 (1981),
39–52.

ConsiderE = {(i, j) ∈ N2 : i < j}, and let define a partial order onE by (i, j) ≤ (i′, j′) iff either i = i′ and
j ≤ j′, or elsej < i′; in other words,(i, j) ≤ (i′, j′) iff j ≤ j′ and eitheri = i′ or j < i′; and(i, j) < (i′, j′) iff
j < j′ and eitheri = i′ or j < i′. Now E is well-founded, because in any strictly decreasing sequence of elements
of E, thej coordinate must strictly decrease, which is impossible unless the sequence is finite. Furthermore,E has
no infinite antichain, because if(i0, j0) belongs to an antichain, then every other element(i, j) of that antichain must
satisfyi ≤ j0; but each of the finitely many possible values ofi can be used by at most one element of the antichain
(because two elements ofE with the samei coordinate are comparable); so the antichain has at mostj0 + 1 elements.
On the other hand, fork > 0, consider the elementsSk = (0, k)∧ · · · ∧ (k− 1, k) of E∗ (note that the elements(0, k)
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through(k − 1, k) of E are pairwise incomparable). Ifk < ` the we cannot haveSk ≤ S` because(k, `) is in S` but
is not greater or equal to any element ofSk; and conversely, we cannot haveS` ≤ Sk because(0, k) (or indeed any
element ofSk) is in Sk but is not greater or equal to any element ofS`. So theSk for k > 0 form an infinite antichain
in E∗.

We therefore have an example of a partially ordered setE such thatE∗ is well-founded (i.e.E is fairly ordered)
but E∗∗ is not (i.e.E∗ is not fairly ordered). This leads us to consider the following notions. DefineE∗α, whereα
ranges over the ordinals, as follows: letE∗0 = E, and forα + 1 a successor,E∗(α+1) = (E∗α)∗ (with the embedding
of E∗α in it), and forδ a limit ordinal letE∗δ be the inductive limit of theE∗α for α < δ with the embeddings we
have defined. Define thewell-foundedness generationof E to be the smallestγ such thatE∗γ is not well-founded,
and∞ if E∗γ is well-founded for all ordinalγ. (Updated 2002-05-22, to allow for ordinal generations.)

The well-foundedness generation of a partially ordered setE is > 0 (of course,∞ > 0) iff E is well-founded.
WhenE is a well-ordered (this implies “totally ordered”) set, manifestly,E∗ is isomorphic toE ∪ {>}, where> is
a greatest element, so it is again well-ordered; this means that the well-foundedness generation of any well-ordered
set is always∞. So partially ordered setsE whose well-foundedness generation is0 (i.e. E is not well-founded),1
(i.e. E is well-founded but not fairly ordered) or∞ (e.g.E is well-ordered) are easy to construct, and we have given
an example of a partially ordered set whose well-foundedness generation is2. The obvious stupid question is then:
what well-foundedness generations are possible among partially ordered sets?

2002-07-07:044
TODO on future notes in this diary:

• Divisions of the simplex according to proportional electoral system: is it of equal measure?
• “Eclectic” subsets of an algebraically closed field. (See2002-07-13:045and2002-07-13:046.)
• Describe a necessary and condition sufficient for a morphism of schemes (or more generally sheaves of sets on

affine schemes for the flat topology) to be finite, where the condition is sought in the internal language of the
topos (as far as possible).

• Associating a dimension0 ring (spectrum of connected components) to a given ring as the associated sheaf functor
for the¬¬ Lawvere-Tierney topology: how can we describe it concretely? Can we do something for irreducible
components?

• If X ⊆ PN is a smooth projective variety defined by known equations, andf :P1 → X a rational curve, how to
compute thè i such thatf∗TX

∼= ⊕
i O(`i): describe the actual algorithm, give examples.

• A composition law on deformation classes of morphismsf :P1 → X (for X a smooth projective variety). Con-
crete computation in the case whereX is the blowup ofP2 at the origin.

• Describe the arithmetic operation on ordinalsα +̇β being the largest possible order-type of a well-order on the
disjoint unionα]β extending the sum order; similarly,α ·̇β being the largest possible order-type of a well-order
on the cartesian product extending the product order. Show that these are Conway’s operations.

• Seek a nice sum and product operation on polarized games (with a finer equivalence relation than that Conway
uses, so products of games can be taken).

• Differentially closed fields and how they formalize symbolic computation.
• Iterated Gödelization cannot provide completeness. (See2003-10-18:055.)
• (“Recall”...) Construction ofCp and the completion of the algebraic closure ofFp[[t]] inside Mal’cev-Neumann

rings.

2002-07-13:045
Let E be a subset of an algebraically closed fieldk. We say thatE is eclecticwhen it satisfies the following

equivalent conditions:
• For any natural numbern, if Z is an irreducible component of the Zariski closure of a subset ofEn ⊆ kn, then

there exists a finite setΛ and a partition(Nλ)λ∈Λ of {1, . . . , n} such thatZ =
∏

λ∈Λ Zλ where, for eachλ ∈ Λ,
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eitherZλ is the diagonal ofkNλ (that is, the subset of constant mapsNλ → k), or Nλ is a singleton{i} andZλ

is the singleton of an elementci ∈ E.
• For any natural numbern, if U is a Zariski open set of a (closed) algebraic subvarietyX of kn, and ifU ∩ En is

infinite, then there exists a straight lineL whose parametric equation in function of a parametert can be given by
n equations (fori ranging from1 throughn), each of the formxi = ci whereci ∈ E, or xi = t, with at least one
equation of the latter form, such thatL ⊆ X andL meetsU .
We will show that these two conditions are, indeed, equivalent, but before we set out to do so, we introduce a

bit of terminology. For any subsetA of k, we call a (closed) subvarietyZ of kn “A-multidiagonal” iff there exists
a finite setΛ and a partition(Nλ)λ∈Λ of {1, . . . , n} such thatZ =

∏
λ∈Λ Zλ where, for eachλ ∈ Λ, either Zλ

is the diagonal ofkNλ , or Nλ is a singleton{i} and Zλ is the singleton of an elementci ∈ A. Thus, the first
condition above states thatE is eclectic iff any irreducible component of the Zariski closure of any subset ofEn is
E-multidiagonal. Note thatE-multidiagonal subvarieties of dimension0 of kn are just singletons of points ofEn.
Futher,E-multidiagonal subvarieties of dimension1 of kn are precisely the straight linesL whose parametric equation
in function of a parametert can be given byn equations (fori ranging from1 throughn), each of the formxi = ci

whereci ∈ E, or xi = t, with at least one equation of the latter form (this is the sort of lines given by the second
condition above).

We also define thetypeof anA-multidiagonal subvarietyZ of kn to be the set ofNλ of the first kind (Zλ is a
diagonal): more rigorously, the type ofZ is the datum consisting of the finite setT that is the union of theNλ for
whichZλ is not a singleton, endowed with the equivalence relation whose equivalence classes are theNλ in question
(note that the number of equivalence classes in the type is the dimension of the multidiagonal variety); we abusively
tend to omit the mention of the equivalence relation onT when speaking of a type. AnA-multidiagonal subvariety
of kn is determined uniquely by its typeT and its projections, each one being a singleton{ci}, on the coordinates
i 6∈ T : it is then the product of{c} ∈ AT ′ (whereT ′ = {1, . . . , n} \ T ) by ∆T , where∆T is the unique (“model”)
multidiagonal subvariety ofkT having typeT .

Let us show now that the two conditions are, indeed, equivalent. SupposeE satisfies the first, and letX andU
be respectively a closed algebraic variety ofkn (for somen ∈ N) and a Zariski open set ofX such thatU ∩ En is
infinite. CallF the latter set. The Zariski closure ofF cannot be just a finite number of points (asF is infinite), so it
must contain an irreducible componentZ of dimension≥ 1. Obviously,Z ⊆ X (becauseX is Zariski closed), and
Z ∩ U 6= ∅ (otherwiseZ would be disjoint fromF and the union of all other components would be a smaller Zariski
closed set containingF ). Now by the first condition above (which we have assumed),Z is E-multidiagonal. EitherZ
is of dimension1, in which case it is precisely theL we seek. ElseZ is of dimension≥ 2. Choose ani ∈ {1, . . . , n}
such that the projection ofZ onto thei-th coordinate is not constant (and hence, by irreducibility, is all ofk): such an
i exists becauseZ is not a point. Of the infinitely many hypersurfaces ofZ defined by the equationsxi = c for c in E
(notice thatE is infinite sinceU ∩ En is), not all can be contained inZ \ U , so there existsc ∈ E with the property
that the intersectionZ ′ of Z and the hyperplanexi = c meetsU . ThenZ ′ ⊆ X andZ ′ ∩ U 6= ∅, and we also note
thatZ ′ is E-multidiagonal (its type is obtained by removing one equivalence class from the type ofZ). So proceed
with Z ′ as we have withZ: again, if its dimension is1 we have finished, otherwise there is a hypersurfaceZ ′′ in Z ′

with the same properties, and so on until the dimension is1, which gives us the desiredL.
Conversely, supposeE satisfies the second property above, and we must show that it satisfies the first. So letZ

be an irreducible component of the Zariski closure of a subsetF of En, and we must show that it has the structure
detailed above. ReplacingF by F ∩ Z, we may assume thatZ is the Zariski closure ofF . Now consider all possible
typesT 6= ∅ of multidiagonal subvarieties of dimension> 0 of kn: for each suchT , writing T ′ for the complement
{1, . . . , n} \ T , consider the setHT of c ∈ kT ′ for which the (unique)k-multidiagonal subvariety ofkn of type
T having projectionci on eachi ∈ T ′, is contained inZ. This HT is a Zariski closed subset ofkT ′ (being the
complement of a projection of the complement ofZ); and HT × ∆T ⊆ Z, where∆T is the unique (“model”)
multidiagonal subvariety ofkT having typeT (indeed,HT is precisely the largest possible satisfying this condition).
EitherZ is contained in the unionY of all theHT × ∆T or it is not. If it is, then it is contained in one of them (by
irreducibility), and then by projecting the whole situation onkT ′ , we are done by an easy induction on the dimension
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of Z (the coordinates inT play no role at all in the problem). If it is not, then writeU for the complement inZ of the
unionY in question. SinceZ is the Zariski closure ofF , the latter cannot be contained inY plus a finite number of
points. SoU ∩ F , and in particularU ∩ En, is infinite, and by the second condition above (which we have assumed),
Z must contain anE-multidiagonal lineL which meetsU . But this is impossible sinceL must be contained inY by
construction of the latter.

(Whew! That was a excruciatingly tedious. We continue in2002-07-13:046.)

2002-07-13:046
(This continues2002-07-13:045.)
In 2002-07-13:045we have given the definition of an eclectic subsetE of an algebraically closed fieldk as one

which satisfies the following two equivalent conditions (reworded to be slightly more understandable, if less precise):
• For any natural numbern, any irreducible component of the Zariski closure of a subset ofEn ⊆ kn is multidiag-

onal, that is, is the product of diagonals and singletons.
• For any natural numbern, if U is a Zariski open set of a (closed) algebraic subvarietyX of kn, and ifU ∩ En is

infinite, then there exists a straight lineL ⊆ X which meetsU and is the product of a diagonal by a singleton in
some power ofE.
Evidently any finite subset ofk is eclectic, andk itself is not eclectic. We can actually define the notion of

beingn0-eclectic, wheren0 is a natural number: just replace “for any natural numbern” in the definitions by “for
any natural numbern ≤ n0”; and the proof we have given in2002-07-13:045that the two conditions are equivalent
applies equally well ton0-eclecticism. It is obvious that any subsetE of k is 1-eclectic. Trivially,n-eclectic implies
n′-eclectic forn′ ≤ n, and eclectic meansn-eclectic for anyn.

Here are a few natural questions:
• Is it (by any chance) true that if a subsetE of an algebraically closed fieldk is 2-eclectic then it is eclectic?
• If E is an eclectic subset of an algebraically closed fieldk andk′ is an algebraically closed field containingk, is

E necessarily eclectic ink′?
• If E is a set of algebraically independent elements (over the prime field) in a fieldk, is E eclectic?
• Is it true that for any algebraically fieldk there always exists an infinite eclectic subsetE (better even: having the

same cardinality ask)?
I tend to think that the answer to all of these is “yes” (but with a great doubt as to the first).
Here is a construction which should give an infinite eclectic subset ofQ̄: start by enumerating all (closed) alge-

braic subvarieties of̄Qn (for variablen) in a sequence(Vι)ι∈N. Construct a sequence(xµ)µ∈N of elements of̄Q by
induction onµ as follows. Assume allxν for ν < µ have already been constructed. Consider all linesL in someQ̄n

whose parametric equation in function of a parametert can be given byn equations (fori ranging from1 throughn),
each of the formxi = xνi for someνi < µ, or xi = t, with at least one equation of the latter form. And for each
suchL andVι for ι ≤ µ living in Q̄n for the samen, if L is not completely contained inVι, consider all values of the
parametert for which the corresponding point inL happens to be inVι. Since there is only a finite number ofι ≤ µ
and a finite number ofL (omitting all those which play no role because they live in aQ̄n with n greater than any of the
Vι do), all of theset are only finite in number. Now choose somexµ that is not among them nor equal toxν for any
ν < µ. This defines a sequence(xµ)µ∈N of elements of̄Q which is injective, and whose range should be an infinite
eclectic subset of̄Q. The same applies, in fact, to any countable algebraically closed setk.

I also conjecture the following: a subsetE of an algebraically closed fieldk is eclectic iff for any natural number
n, if X is an algebraic (closed) hypersurface ofkn, and ifX ∩En is infinite, then there exists a straight lineL whose
parametric equation in function of a parametert can be given byn equations (fori ranging from1 throughn), each
of the formxi = ci, or xi = t, with at least one equation of the latter form, such thatL ⊆ X. This is obviously
necessary, but it is (apparently) weaker than the (second form of the) definition in three counts: first,U is taken to be
all of X; second,X is taken to be of codimension1; and third, theci are not required to be inE. I believe that despite
these three weakenings, we still get a condition equivalent to being eclectic; but I can’t prove that any of these three
weakenings (with or without the others) still gives an equivalent condition.
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(Thanks to Joël Riou for discussions on this subject.)

2002-12-01:047
This adds to2002-01-20:030, and remarks on “Higman’s game” defined there.
Péter Horvai points out to me that Higman’s game has a trivial winning strategy (by this I mean the misère

Higman’s game: because the normal Higman’s game has an even more trivial winning strategy, which consists of
simply playing the empty word immediately). Namely, if the alphabetA has an odd number of letters, the first player
plays a single-letter word and wins by reducing to being second player on an even alphabet; if the alphabetA has
an even number of letters, the second player wins by choosing an involutionh: A → A without fixed points, and,
whenever the first player plays a wordw, responding by playingh∗(w), whereh∗: A∗ → A∗ is defined by applying
h to every letter. Manifestely,h∗(w) is not a subword ofw (since it has the same length and is not equal); nor is it a
subword of any other previously playedu ∈ A∗, for if it were thenw would be subword ofh∗(u), andh∗(u) has been
played already (either just before, or just afteru) if the second player has stuck to the same strategy—so the second
player can always play, and therefore wins.

2002-12-01:048
This adds to2002-01-20:030and generalizes “Higman’s game” defined there.
If M is any monoid (= set with an associative multiplication having a unit element), we can define a relation¹

on M by lettingx ¹ y iff we can writex = x1 · · ·xn andy = y0 · x1 · y1 · · · yn−1 · xn · yn, wherex1, . . . , xn and
y0, . . . , yn are elements ofM . In general, this is not an order relation: for example, ifM = G is a group, thenx ¹ y
holds for anyx andy. However, it is reflexive and transitive (i.e., it is a preorder relation). In fact,¹ is the smallest
preorder onM that is invariant by left- and right-translation and such that1 ¹ x for anyx. If M is such that¹ is an
order, we say thatM is cancellation-free(note: there may be several different definitions for this, and I’m not sure as
to how they relate).

Note that the relation≡ defined byx ≡ y iff x ¹ y andy ¹ x, is an equivalence relation, and it is compatible
with the monoid structure so that the quotientM/ ≡ has a natural monoid structure, and is cancellation-free.

Higman’s game onM can then be defined in the straightforward way: two players take turns in selecting an
elementx ∈ M such thatx does not satisfyz ¹ x for anyz that has been previously played, and the first one who
cannot play looses (in the normal version) or wins (in the misère version). Of course, we might as well play the game
in the cancellation-free monoidM/ ≡ defined above. Now Higman’s lemma (proved in2002-01-23:031) assures that
for a monoid of finite type (that is, having a finite set of generators), the game always terminates in a finite number of
steps (no matter what the players choose), so that some player has a winning strategy.

We can of course defined the lengthlgN (M) (and the Grundy function as well,GyN (M), if needed) of the
monoidM as the length and Grundy function respectively of this game. For example,lgN (N) = ω andlgN (N2) = ω2

(the Higman game onN2 is Conway’s poisoned wafer game) and more generallylgN (Nr) = ωr.

2002-12-01:049
Recall a few facts about closed unbounded subsets of a regular uncountable cardinal. Ifκ is a regular uncountable

cardinal (seen, of course, as the set of ordinalsα < κ), we say that a subsetC ⊆ κ is closed unboundediff C is closed
but not compact for the order topology onκ (and the topology it induces onC, which incidentally has then good
taste of being the order topology onC); in a more natural way,C ⊆ κ is closed unbounded iffsupC = κ and
sup C ′ ∈ C ∪ {κ} for all C ′ ⊆ C. For any suchC, there is a unique (strictly) increasingf : κ → κ whose image isC,
andf is continuous; and conversely, any increasing continuousf :κ → κ has a closed unbounded image: an increasing
continuous functionκ → κ is sometimes callednormal—then normal functions onκ and closed unbounded subsets
of κ can be identified; evidently, iff is normal thenf(α) ≥ α for all α < κ.

(Vincent Nesme tells me that closed unbounded subsets ofκ are also calledclubsin κ, where “club” stands for
“CLosed UnBounded”. A rather smart terminology when the term is often mentioned.)
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The intersection of two closed unbounded subsets ofκ is closed unbounded. More generally, the intersection of
less thanκ closed unbounded subsets ofκ is closed unbounded. The set of limit points (accumulation points) of a
closed unbounded subset ofκ is closed unbounded. The image of a closed unbounded subset by a normal function is
closed unbounded. The set of fixed points of a normal function is closed unbounded.

Another important property is the following. If(Cα)α<κ is a collection of (otherwise arbitrary) closed un-
bounded subsets ofκ, we define theirdiagonal intersection4α<κCα as{ξ < κ : ξ ∈ ⋂

α≤ξ Cξ} or equivalently as⋂
α<κ(Cα ∪ α) (note that this definition is ever-so-slighty different from that found in Jech, but the difference is, of

course, completely inconsequential). Note that the diagonal intersection does not change if we replaceCα by Cα \ α
(we remove the elementsξ < α from Cα). More importantly, note that the diagonal intersection does not change
if we replaceCα by

⋂
β≤α Cβ , so that(Cα) is decreasing (in the broad sense), and then the diagonal intersection is

{ξ < κ : ξ ∈ Cξ}. The important property, of course, is that the diagonal intersection is again closed unbounded.
Supposef :κ → κ is normal (i.e. continuous and (strictly) increasing). PutC0 = κ, let C1 = f(κ) be the

image off , andC2 = f(C1) image of its image (which is the image off◦2), C3 = f(C2) and so on, more generally
Cα+1 = f(Cα) for α < κ together withCδ =

⋂
β<δ Cβ for δ < κ limit. Note incidentally that this permits to

define in a natural way theβ-th iterate off with itself (namely,f◦β is the normal function which enumeratesCβ).
Unfortunately, I do not see a natural and elegant way to relate the diagonal intersection of theCα to the set of fixed
points off (there should be a relation—or a common generalization at least); though naturally every fixed point off
is in the diagonal intersection (since it is in the plain intersection).

If F is a function taking closed unbounded sets ofκ to closed unbounded sets ofκ, such thatF (C) ⊆ C for all
C closed unbounded, we define another operationG of the same type by lettingG(C) be the diagonal intersection
of theF ◦α(C) for α < κ, whereF ◦α(C) is defined as one would think:F ◦0(C) = C, F ◦(α+1)(C) = F (F ◦α(C))
for all α < κ, andF ◦δ(C) =

⋂
β<δ F ◦β(C) for δ < κ limit. Then, of course, we can letG0 = F , G1 = G,

G2 obtained asG previously if we takeF = G1, and so on,Gα+1 obtained asG above by takingF = Gα, and
Gδ(C) =

⋂
β<α Gβ(C) for δ < κ limit. And then we can defineH(C) to be the diagonal intersection of theGα(C)

for α < κ. Similarly, we can letH0 = F , H1 = H, and iterate the process used to constructH from F to create
Hα for allaα < κ, all taking closed unbounded subsets to closed unbounded subsets. This naturall leads us to define
F0 = F andF1 = G andF2 = H, and for allα we can defineFα, and we can again take a diagonal intersection to
defineG ... The picture should be clear by then.

In particular, these constructions can be used to define many denumerable ordinals.

2002-12-01:050
(Compare with2002-01-13:028.) This is an attempt to found “semialgebraic” geometry.
Recall that ifK is a field, a necessary and sufficient condition for there to exist a total order onK such that

(i) x ≤ y impliesx + z ≤ y + z for all x, y, z ∈ K, and (ii)0 ≤ x and0 ≤ y imply 0 ≤ xy for all x, y ∈ K, is that
−1 is not a sum of squares inK. When this is the case, we say thatK is orderable; furthermore, when there exists
a uniqueorder satisfying (i) and (ii), we say thatK is uniquely orderable. The latter condition is weaker than being
real-closed: a real-closed field is certainly uniquely orderable (since every element is either a square or the opposite
of a square) butQ (orQ( 3

√
2)) is uniquely orderable without being real-closed; on the other hand,Q(

√
2) is orderable

but not uniquely orderable.
We now say that a (commutative) ringA is orderable (an admittedly rather dubious terminology) iff, for every

prime idealp of A, the field of fractionsFrac(A/p) of the quotient integral domainA/p is orderable in the previous
sense. It would be eminently desirable to obtain a simple necessary and sufficient condition (not involving quantifica-
tion over prime ideals) for a ring to be orderable.

Note that any orderable field is of characteristic0 for obvious reasons. It follows that ifA is an orderable ring
then it must containQ (for if there were an integern ∈ N∗ not invertible inA then it would be contained in a prime
ideal, contradicting the previous statement). In particular, we can evaluate any element ofQ[t] (the ring of polynomials
with coefficients inQ over the indeterminatet) at any element ofA; an elementf of Q[t] which is positive (in the
broad sense, i.e.f(x) ≥ 0) on every rational valuex, or, equivalently, on every realx, will simply be called “positive”
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(everywhere here, “positive” is meant in the broad sense). Note that iff ∈ Q[t] is positive thenf(x) ≥ 0 for any
x in any real-closed fieldK, and, hence, inanyorderable fieldK for any order onK. If now f ∈ Q[t] is such that
f(x) > 0 for all realx (this time it is not sufficient to assume this for all rationalx—however, it suffices to assume it
for x in the real-closure ofQ), or, equivalently, if there existsr > 0 rational such thatf(x) = r + g(x) with g positive
in the broad sense—and we summarize these conditions by saying thatf is “strictly positive”—thenf(x) cannot be
zero for anyx in any orderable fieldK, so thatf(x) cannot belong to any prime ideal ifx is an element of an orderable
ring A. For example, for any orderable ringA, and anyx ∈ A, the elementx2 + 1 ∈ A must be invertible inA.

To put it differently, letQbtc be the ring of rational functionsf ∈ Q(t) that have no real poles. ThenQbtc is
an orderable ring (this is easy), and forf ∈ Qbtc andx ∈ A with A an orderable ring, the elementf(x) ∈ A is
well-defined in the obvious manner. Abstract nonsense: the orderable ringQbtc represents the forgetful functor from
the category of orderable rings to the category of sets (much asZ[t] represents the forgetful functor from the category
of rings to the category of sets).

Any quotient of an orderable ring is orderable: this is an easy consequence of the definition.
For any ringA there is a morphismA → Ar to an orderable ringAr that is universal in the sense that any

morphismA → B from A to an orderable ringB factors throughB. Indeed,Ar can be constructed by inverting inA
every element which does not belong to any prime idealp for whichFrac(A/p) is orderable. This construction takes
any field which is not orderable to0, of course; it takesZ toQ andQ[t] toQbtc.

If A is an orderable ring, we can define itsrealspectrumas follows. It is the setRSpec A of data consisting of a
prime idealp of A together with a total order on the fieldFrac(A/p). Actually we can translate such data in a different
way: collect the setP of elementsx of A such that the class ofx in A/p is positive (in the broad sense); thenp can be
reconstructed as the set ofx of A such thatx ∈ P and−x ∈ P, and the order onA/p in the obvious way; it turns out
thatP satisfies the following conditions: (i) ifx, y ∈ P thenx+y ∈ P, (ii) if x ∈ A thenx2 ∈ P, (iii) if x, y ∈ A are
such thatxy ∈ P then eitherx, y ∈ P or−x,−y ∈ P, and (iv)−1 6∈ P; and any set satisfying (i), (ii), (iii) and (iv)
comes from a point ofRSpec A (and defines such a point) as explained. (Compare with the following definition of a
prime idealp of A: (i) if x, y ∈ p thenx + y ∈ p, (ii) 0 ∈ p and ifx ∈ A andy ∈ p thenxy ∈ p, (iii) if x, y ∈ A are
such thatxy ∈ p thenx ∈ p or y ∈ p, and (iv)1 6∈ p.)

The condition thatA is orderable in defining the realspectrum is innocent: we can always replaceA by its
universal orderable algebraAr as defined earlier, and then defineRSpec A asRSpec Ar, which is, anyway, exactly
the definition we have given. But “morally”, semialgebraic geometry only “sees” orderable rings.

We further put a topology onRSpec A by as follows: ifx ∈ A, we defineH(x) as the set ofP ∈ RSpec A
such that−x 6∈ P, or, in other words, prime idealsp endowed with an order onFrac(A/p) such that the image ofx is
strictly positive inFrac(A/p). These are the subbasis for a topology onRSpec A, that is, finite intersections of such
H(x) are the basis of a topology onRSpec A with which we endow the later.

We now put a sheaf or ringsO onRSpec A as follows: defineO(H(x1) ∩ · · · ∩H(xs)) as the localization ofA
which inverts everyy ∈ A that satisfiesy 6∈ p for everyp for which some correspondingP is in H(x1)∩ · · · ∩H(xs).
We also put onRSpec A a subsheafP of O as follows: defineP(H(x1) ∩ · · · ∩H(xs)) as the set of elementsh of
O(H(x1)∩ · · · ∩H(xs)) such that for everyP of H(x1)∩ · · · ∩H(xs) the image ofh in Frac(A/p) is positive in the
broad sense (wherep and the order onFrac(A/p) are defined by the datumP): note that the image ofh in Frac(A/p)
is meaningful precisely because elements ofp have not been inverted in constructingO(H(x1) ∩ · · · ∩ H(xs)), by
definition of the latter.

The datum consisting of the topological spaceRSpec A (for some orderable ringA) together with the sheavesO
andP will be called anaffine realscheme.

By definition, arealschemewill be a topological spaceX endowed with a sheaf of ringsO and a subsheafP of
the latter such thatX can be covered by open setsU such that the topological spaceU together with the sheaf of rings
O|U and the subsheafP|U of the latter is isomorphic to an open subset of an affine realscheme.

This definition is unpleasant because of the words “an open subset of” at the end. The problem, of course, is that
an open subset of an affine realscheme may not be covered by affine realschemes: this is so for very stupid reasons,
for example the open setH(t) (the open positive half-line) ofRSpec(Qbtc) (the affine line) cannot be covered. To
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make the definition less unpleasant, we introducerealaffinerealschemes.
Specifically, we associate to a “principal” open subsetU = H(x1) ∩ · · · ∩ H(xs) of RSpec A the ringA′ =

O(H(x1) ∩ · · · ∩H(xs)) which we have already defined, together with the subsetP ′ = P(H(x1) ∩ · · · ∩H(xs))
of “positive” functions onH(x1) ∩ · · · ∩ H(xs). We can supposedly reconstruct the realscheme(U,O|U , P|U ) as
follows. The setU is the set of data consisting of a prime idealp of A′ together with a total order onFrac(A′/p) such
that all elements ofP ′ have a positive image; the topology onU and the sheavesO ′ = O|U andP ′ = P|U can the be
defined just as previously, taking into account the extra datumP ′. We call thisRSpec(A′, P ′) and define arealaffine
realscheme to be (isomorphic to) a realscheme of this form.

This definition is terribly nasty, because, just as I don’t know a straightforward definition of an orderable ring, I
also don’t know what simple conditionsP ′ must satisfy for(A′, P ′) to be of the form(O(H(x1) ∩ · · · ∩ H(xs)) ,
P(H(x1) ∩ · · · ∩H(xs))) (for some affine realschemeRSpec A and somexi ∈ A), which then letsRSpec(A′, P ′)
be defined and be a realaffine realscheme. If I had elegant criteria on(A′, P ′) (“rings with positivity conditions”), I
would start by defining a realaffine realschemes from these data, and proceed from then on.

In the mean time, it remains to define morphisms. These are what you’d think: a morphism between realschemes
is a morphism between locally ringed spaces which preserves positivity in the sense that it restricts to a morphism
from theP (“positivity”) sheaf of one to that of the other. If the world makes any sense, morphisms fromRSpec A′

to RSpec A are simply morphisms of rings fromA to A′—here, of course, it is essential forA′ to be orderable (and
possiblyA also); and more generally, morphisms fromRSpec(A′, P ′) to RSpec(A,P ) should be morphisms of rings
from A to A′ which sendP to a subset ofP ′.

Whew! That was rather tedious. And, of course, I didn’t do any work here—I just charted the territory: it remains
to check that things, in fact, do work as they should and that this whole semialgebraic (realalgebraic?) geometry does
make sense.

The dream would be to end up with various nice topoi, analogous to the Zariski, étale and flat topoi of usual
algebraic geometry. But whereas the sheaf represented bySpecZ[t] (that is, the forgetful functor from rings to sets) is,
in algebraic geometry, an algebraically closed field (for the appropriate, intuitionist, definition of “algebraically closed
field”) in the flat topos, in semialgebraic geometry, in the realflat topos, the sheaf represented by the affine realscheme
RSpecQbtc should be, for a suitable definition, a realclosed field.

2002-12-05:051
Recall (compare2002-03-11:033) that on a toposT with subobject classifierΩ, aLawvere-Tierney topologyis a

morphismj: Ω → Ω such that (i)j ◦ true = true, (ii) j ◦ j = j and (iii) j ◦ and = and ◦ (j × j). Note that it follows
thatj ≥ idΩ (for the natural order onΩ). (Proof: if X is any object ofT we need to prove that the inequality holds in
Ω(X) = Hom(X, Ω), the poset of subobjects ofX. Now if U is a subobject ofX andχU : X → Ω its characteristic
morphism—so thatU ½ X is the pullback oftrue:> → Ω by χU—thenχU is true when pulled back toU , sojχU

also is: this proves that the subobjectjX(U) of X whose characteristic morphim isjχU , factorsU , which is what we
wanted. Hum, this last part would be better if it were a bit clearer.) In fact, it is a remarkable property of the complete
Heyting algebraΩ that any (internal!) mapj: Ω → Ω satisfying (i), (ii) and (iii) above automatically verifiesj ≥ idΩ.
In general, given a Heyting algebraH, we define a Lawvere-Tierney topology onH to be a mapj:H → H which
satisfies (i)j(u) ≥ u for all u ∈ H, (ii) j(j(u)) = j(u) for all u ∈ H and (iii) j(uu v) = j(u)u j(v) for all u, v ∈ H
whereu is the meet operation inH.

In particular, ifT is the topos of sheaves on a topological spaceX, a Lawvere-Tierney topology onT (or, for
short, onX) is precisely a Lawvere-Tierney topology on the Heyting algebraO(X) of open sets ofX, i.e. a map
j:O(X) → O(X) which satisfies (i)j(U) ⊇ U for all U open inX, (ii) j(j(U)) = j(U) for all U open inX and
(iii) j(U ∩ V ) = j(U) ∩ j(V ) for all U andV open inX. One particular example is given as follows: ifY is any
subset ofX (endowed with the induced topology), define, forU open inX, the setjY (U) to be the largest open set
W ⊆ X such thatW ∩ Y = U ∩ Y ; equivalently, it is the union of allW ⊆ X such thatW ∩ Y = U ∩ Y , or
equivalently the union of allW ⊆ X such thatW ∩ Y ⊆ U ∩ Y ; or again,jY (U) is the set of all pointsx ∈ X such
thatx has a neighborhoodW for whichW ∩Y = W ∩U ∩Y , that is, the set of all pointsx ∈ X in a neighborhood of
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whichU contains all the points ofY . ForY ⊆ X closed,jY (U) is simply the unionU ∪ (X \Y ) of U and the (open)
complement ofY : we havejY : U 7→ U ∪V whereV = jY (∅) = X \Y . ForY ⊆ X open,jY (U) is simplyY ⇒ U
(as given by the Heyting algebra structure). Note thatY is dense iffjY (∅) = ∅: more generally we will say that a
Lawvere-Tierney topology onX is denseiff j(∅) = ∅, or on any toposT iff j ◦ false = false, or on any Heyting
algebraH iff j(⊥) = ⊥. Note that the¬¬ topologyj = ¬¬, on any topological space (j then sends an open setU
to the regular open set which is the interior of the closure ofU ), on any topos or on any Heyting algebra, is (trivially)
dense in the sense just defined.

A folkloric theorem on topoi states that every geometric morphism between topoi (a geometric morphismf : T →
T ′ is a pair of functors:f∗: T → T ′ called the direct image part, andf∗: T ′ → T called the inverse image part, such
that f∗ a f∗, i.e. f∗ is left adjoint tof∗, andf∗ is left exact, i.e. preserves finite limits) which is an embedding
(meaning that the direct image partf∗ is fully faithful) can be written, up to equivalence of categories, as the canonical
embeddingShj(T ) → T (see2002-03-11:033for the definition ofShj(T ); here, the direct image partShj(T ) → T
is the forgetful functor, and the inverse image partT → Shj(T ) is the sheafification functor) from the topos ofj-
sheaves for some uniquely defined Lawvere-Tierney topologyj onT . We can then call a geometric morphism of topoi
which is an embedding, according as its associated Lawvere-Tierneyj is: dense iffj is dense (in the sense defined
above), closed iffj is closed (that is,j = and(idΩ, j(false))), and so on. It would also seem (update: this is in fact
slightly dubious) that a geometric morphism is calledopeniff the inverse image partf∗ admits aleft adjoint (then
written f! and called the “extension by zero/empty” functor): we can then call a Lawvere-Tierney topologyj open
iff the associated embedding of topoi is open—and if the world makes any sense, suchj will be given exactly by
some global sectionH of Ω by j(U) = H ⇒ U (internalized) (this needs to be checked). We can further call an
embedding of topoi (or, equivalently, a Lawvere-Tierney topologyj) locally closed iff it is open after factorization by
the “closure” which is the Lawvere-Tierney topology defined byand(idΩ, j(false)).

Many details on this need to be checked, but there do not seem to be any major difficulties.

2002-12-12:052
Important note (2002-12-13):Much of what follows iswrong if not downrightnonsense; and it is incomplete

anyway. I am leaving it anyway, since some of it is of interest (if only to illustrate what nonsense can be spoken when
enough care is not paid), and I will try to correct errors, but I might miss some.

(The following situation was suggested to me by Fabrice Orgogozo.)
Let f :X → S be a geometric morphism of topoi: in other words, we are given two functorsf∗:S → X (the

inverse image part) andf∗:X → S (the direct image part) withf∗ left adjoint tof∗ andf∗ left exact (which means it
preserves finite limits).

We define a toposZ = X ←×S S (correction: the toposZ defined here isnot what should be calledX ←×S S:
see further corrections below) as follows: the objects ofZ are triples(F,G, α) where (i)F is an object ofX , (ii) G is
an object ofS, and (iii) α is an arrowG → f∗F in S (by adjunction, this is equivalent to giving the arbitrary arrow
εf∗α: f∗G → F in X ); and its arrows(F ′, G′, α′) → (F, G, α) are pairs(ϕ,ψ) whereϕ: F ′ → F andψ: G′ → G
are such thatαψ = (f∗ϕ)α′ (which is equivalent to demanding thatε(f∗α)(f∗ψ) = ϕε(f∗α′)).

We define a geometric morphismπ:Z → X as follows: the direct image partπ∗ is given byπ∗(F,G, α) = F on
objects andπ∗(ϕ,ψ) = ϕ on morphisms, and the inverse image partπ∗ by π∗F = (F, 0, 0) (where0 is first the initial
object ofS and then the unique arrow from it toF ) andπ∗ϕ = (ϕ, 0) (correction: thisπ∗ is not left exact since it does
not send the terminal object to the terminal object; so we donot have a geometric morphismπ as suggested). We also
define a geometric morphism$:Z → S by letting$∗(F,G, α) = G and$∗(ϕ,ψ) = ψ and$∗G = (f∗G,G, η)
(whereη is the unit of the adjunctionf∗ a f∗) and$∗ψ = (f∗ψ,ψ). Finally, we define a 2-morphismδ: $ → fπ by
letting δ∗:$∗ → f∗π∗ be given asδ∗(F,G, α) = α: $∗(F, G, α) = G → f∗F = f∗π∗(F, G, α), or, equivalently, by
definingδ∗: π∗f∗ → $∗ by δ∗G = (idf∗G, 0):π∗f∗G = (f∗G, 0, 0) → (f∗G,G, η) = $∗G.

So the toposZ = X ←×S S is equipped with the following data: a geometric morphismπ:Z → X , a geometric
morphism$:Z → S, and a 2-morphismδ:$ → fπ (correction: as explained in the corrections above, this is plain
wrong; if it is anything, the toposZ is equipped with morphismsfromX andS and notto them; and if anything, it
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is coüniversalnot universal as claimed in the following sentence). It is, furthermore,universalfor these data, in the
sense that, ifT is any topos, and we are given geometric morphismsh: T → X andk: T → S and a 2-morphism
d: k → fh, then there is a unique geometric morphismρ: T → Z such thath = πρ andk = $ρ andd = δ ∗ ρ. In
fact,ρ is constructed easily enough: ifH is an object ofT , putρ(H) = (h(H), k(H), d(H)) and if λ: H ′ → H is a
morphism, putρ(λ) = (h(λ), k(λ)).

Now besides the geometric morphismsπ:Z → X and$:Z → S we can also define aΨ:X → Z by letting
Ψ∗F = (F, f∗F, idf∗F ) andΨ∗ϕ = (ϕ, f∗ϕ), andΨ∗(F,G, α) = F andΨ∗(ϕ, ψ) = ϕ: we trivially note that
Ψ∗ = π∗, so thatΨ∗ not only has the right adjointΨ∗ but also a left adjointΨ! = π∗. In the language of geometric
morphisms, this means thatΨ is an open (Ψ∗ has a left adjoint (correction: this is dubious and needs to be checked))
embedding (Ψ∗ is fully faithful). SoΨ identifiesX with an open subtopos ofZ, namely the slice category of objects
of sheaves overΨ!1 = (1, 0, 0), that is, objects of the form(F, 0, 0) (recall that, in a topos, any arrowG → 0 is an
isomorphism).

Note incidentally that a morphism(ϕ,ψ) in Z is a monomorphism iffϕ (in X ) andψ (in S) both are: the “if”
direction is obvious; for the “only if”, suppose(ϕ,ψ): (F ′, G′, α′) → (F, G, α) are is a monomorphism: then if
γ1, γ2:G′′ → G′ are such thatψγ1 = ψγ2, construct the object$∗G′′ = (f∗G′′, G′′, η) and send it to(F ′, G′, α′) by
the two morphisms deduced fromγ1 andγ2 using the adjunction$∗ a $∗, namely(ε(f∗α′)(f∗γi), γi), and note that
after composition with(ϕ, ψ) they become equal, so since the latter is a monomorphism,γ1 = γ2 and this shows that
ψ is a monomorphism; similarly, ifς1, ς2: F ′′ → F ′ are such thatϕς1 = ϕς2, construct the objectπ∗F ′′ = (F ′′, 0, 0)
and send it to(F ′, G′, α′) by the two morphisms deduced fromς1 andς2 using the adjunctionπ∗ a π∗, namely(ςi, 0),
and note that after composition with(ϕ, ψ) they become equal, so since the latter is a monomorphism,ς1 = ς2 and
this shows thatϕ is a monomorphism.

We now describe this in terms of the general theory summarized in2002-12-05:051: the embeddingΨ is associ-
ated to a Lawvere-Tierney topologyjΨ onZ in the sense thatX is equivalent to the category ofjΨ-sheaves in such a
way thatΨ∗ becomes the forgetful functor andΨ∗ the sheafification functor. NowjΨ is easy enough to describe. First
we describeΩZ the subobject classifier ofZ. Since a morphism(ϕ,ψ) of Z is a monomorphism iffϕ andψ both are,
we see that a subobject(F ′, G′, α′) of an object(F, G, α) of Z is determined by the subobjectsF ′ of F andG′ of G
(in other words,α′ is determined byα: this is becauseεF ′(f∗α)(f∗ψ) = ϕεF (f∗α′), as we have already noted, and
the right-hand term imposesα′ sinceϕ is a monomorphism — here,ε is the coünit of the adjunction). A moment’s
reflection then suffices to see thatΩZ is a subobject of(ΩX , f∗ΩX × ΩS , p), wherep is the projection on the first
factor. In fact, more specifically,ΩZ is exactly(ΩX , Λ, p) whereΛ is the object ofS, subobject off∗ΩX × ΩS , that
classifies data consisting of a subobjectG′ of G (a given object) and a subobjectF ′ of f∗G with f∗G′ included inF ′

(note that subobjectsG′ of G are classified byΩS by definition, and subobjectsF ′ of f∗G by f∗ΩX by adjunction).
Or, to say things slightly informally but perhaps more comprehensibly,Λ is the subobject off∗ΩX × ΩS consisting
of those(µ, ν) such thato∗(ν) ≤ µ, or equivalentlyν ≤ o∗(µ), whereo∗: ΩS → H (here withH = f∗ΩX ) is the
arrow that exists for anyS-internal complete Heyting algebra taking a truth valueν to the least upper bound of the set
containing> with truth valueν and nothing else, ando∗:H → ΩS is its left adjoint, which takes an elementµ of H to
the truth value ofµ = >. We can then state thatjΨ: ΩZ → ΩZ is (idΩX , jΛ), wherejΛ takes(µ, ν) in Λ to (µ, o∗(µ))
whereo∗: f∗ΩX → ΩS has been described. Note thatjΨ(false) = false, which means that the (open) embeddingΨ is
dense. Of course, the openΨ can also be described byΨ!(1) = (1, 0, 0), a subobject of the terminal object(1, 1, id1)
of Z (or, equivalently, a global section(1, 1, id1) → ΩZ given by(true, (true, false)), which is the smallest such that
jΨ(s) = true).

The Lawvere-Tierney topology corresponding to the closed complementΦ of the open embeddingΨ is then easy
enough to describe:jΦ: ΩZ → ΩZ is given byjΦ = (true, (true, 1ΩS )). (Interrupted... )

2002-12-21:053
Contrary to what I naïvely believed in2002-12-12:052, the fiber product of topoi is not so easy to define (as a

matter of fact, if we take the definition of elementary topoi by Lawvere, Tierney, MacLane, Moerdijk &al, which only
demands the existence of finite limits and not arbitrary small limits, it is not even clear that the fiber product exists,
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because certainly arbitrary finite limits do not exist, as there is no terminal topos: the topos of sets or that of finite sets
come just short of satisfying the conditions).

Supposef :X → S andg:Y → S are geometric morphisms. The (two-)fiber productX ×S Y will certainly not
have as objects things like pairs consisting of an object ofX and one ofY: this kind of construction might succeed in
defining a (braided?) coproduct, but not a (fiber) product. Rather, the intuition we must follows is similar to this:f
more or less definesX as as internal topos inS, and we must mirror this construction withinY.

Here is one case when things are simple enough: assumeS is the topos of sets, andX is the topos of sheaves (of
sets) on a topological spaceX, wheref∗ takes such a sheaf to the set of its global sections andf∗ takes a set to the
corresponding constant sheaf onX. And then the subobject classifierΩX = ΩX is externally the sheaf of open sets
of X and internally the set of subobjects of1 (that is,f∗1); of course,f∗ΩX is thesetof open sets ofX, that is, the
topology onX: so the setX and the subsetf∗ΩX of the powerset ofX, together, determineX andf . So our goal
is to transfer them from the toposS of sets to the toposY through the geometric morphismg. Consider the object
g∗X of Y and the subobjectg∗f∗ΩX of the object(ΩY)g∗X of subobjects ofg∗X; unfortunately, it is not always true
thatg∗f∗ΩX is closed under arbitrary unions, but we can take the closure in question, call itΩX,Y , say. We can now
define the toposZ of sheavesY-sheaves ong∗X for the topologyΩX,Y : an object ofZ is a datum consisting of an
objectZ of Y and an arrowZ → ΩX,Y , together with restriction data (technically, an arrow∆×ΩX,Y Z → Z where
∆ → ΩX,Y is the subobject ofΩ2

X,Y—equipped with the second projection — that is the graph of the relation≤ of
inclusion) that satisfies all the usual conditions for being a sheaf, which we won’t bother to write down because they’re
such a pain. This toposZ, if my intuition isn’t to wrong, should be (up to equivalence) the (two-)fiber product ofX
andY overS.

Even more specifically, suppose still thatS is the topos of sets andX the topos of sheaves on some topological
spaceX, but also thatY is the topos of sheaves on some topological spaceY . Theng∗X is the constant sheaf onY
with valueX, andg∗f∗ΩX is the constant sheaf onY with value the setf∗ΩX of open sets ofX: each section of
the latter (on an open setU of Y , say) can be viewed as a subsheaf ofgX (restricted to the open setU in question).
The completionΩX,Y of g∗f∗ΩX is the sheaf onY whose sections on an open setU of Y are open sets ofX × U .
So it is reasonably clear that the toposZ = X ×S Y is (equivalent to) the topos of sheaves on the topological space
Z = X × Y . This is rather reassuring.

It would be nice to have a definition of a topological space object in a topos, in order to be able to state thatg∗X,
equipped with the completionΩX,Y of g∗f∗ΩX , is such an object. The following looks tempting: a topological space
object in a toposT is an objectE of T together with a subobject of the powerset object(ΩT )E of E that is closed
under finite intersections and arbitrary unions (and hence contains the empty and full subobjects ofE). But are there
perhaps unforeseen difficulties (for example in the notion of “finite intersections”)? This needs to be more carefully
verified.

Now more generally, iff :X → S andg:Y → S are arbitrary geometric morphisms between arbitrary topoi,
we can attempt to construct the (2-)fiber product as follows. First, using a folkloric theorem, we can factor (in an
essentially unique way)f andg as a surjection followed by an embedding; it is then sufficient to construct the fiber
product in the case wheref andg are both surjections (that is,f∗ andg∗ are faithful), or both embeddings (that is,f∗
andg∗ are fully faithful). In the case where they are both surjections, we knowX to be (equivalent to) the category
of coälgebras on a left-exact intarnal comonad inS (see2002-03-12:035), and it is then probably not too difficult to
transfer the comonad in question fromS toY usingg, and the topos of coälgebra on the internal comonad in question
in Y should be the desired fiber product. In the case wheref andg are both embeddings, thenX andY are (equivalent
to) the topoi of sheaves on Lawvere-Tierney topologiesjX andjY on S (see2002-12-05:051): then although it is
probably not the case thatjX ◦ jY is a Lawvere-Tierney topology, the upper bound of(jX ◦ jY)◦k for all k ∈ N is
probably well-defined ans certainly a Lawvere-Tierney topology, whose topos of sheaves should then be the desired
fiber product.
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2002-12-21:054
A wee bit of intuitionist mathematics.
First, concerning terminology, we say that the logic isboolean(i.e. classical) iff(¬¬p) =⇒ p holds for everyp,

or, equivalently, iffp ∨ ¬p holds for everyp. We naturally always havep =⇒ ¬¬p; even if the converse holds, that is
(¬¬p) =⇒ p for somep, we cannot conclude thatp ∨ ¬p holds forthat p; on the other hand, ifp ∨ ¬p then certainly
(¬¬p) =⇒ p. We also have(¬p) ⇐⇒ (¬¬¬p) for all p, but (¬p) ∨ (¬¬p) does not hold in general. To assume that
(¬p)∨ (¬¬p) holds for allp is weaker than to assume thatp∨¬p hold for allp: in the latter case, the logic is boolean;
in the former, we shall say that it isquasi-boolean. We have remained vague as to what “the logic” means. These terms
can apply, for example, to a Heyting algebra, such as the complete internal Heyting algebra of truth values in a topos,
or (a direct image of the former) the complete Heyting algebra of open sets in a topological space. In this particular
case, the logic is boolean exactly when every open set is closed (a very strong condition, which, even in presence of
very mild separation axioms, implies that the space is discrete), or, equivalently, that every open set is regular; now, to
say that the logic is quasi-boolean just means that the closure of an open set is open, or, in other words, that the space
is “extremally disconnected”.

Beyond the empty set∅ (or simply0) and the singleton1, we have a very important setΩ, the set of truth values,
which is the powersetP(1) of the singleton. More generally, for every subsetE′ ⊆ E (technically, equivalence class
of monomorphisms, i.e. injective functions) we have a characteristic functionχ:E → Ω such thatE′ is precisely
the set ofx ∈ E such thatχ(x) = true. That is,Ω is endowed with an elementtrue, or, more precisely, a map
true: 1 → Ω, and every injectionE′ → E is the pullback oftrue: 1 → Ω by a uniqueχ: E → Ω which is the
characteristic function of (the image of) the injection. The unique function0 → 1 (the empty subset of the singleton)
defines another map1 → Ω, that is, another element ofΩ, which is calledfalse. Since¬(true = false), the two maps
1 → Ω given bytrue andfalse define a map2 → Ω (where2 = 1 + 1 is the disjoint union of two singletons, i.e. the
set with two elements) that is (always) an injection, and that is a surjection exactly when the logic is boolean.

If E is any set, the diagonalE → E2, which is always injective (and thus defines a subset ofE2) has a charac-
teristic functionE2 → Ω which is calledequality. A setE is said to haveat most oneelement iff the image of the
equality functionE2 → Ω falls in the singleton oftrue: this is trivially equivalent to saying that the unique function
E → 1 is injective, soE is a subset of the singleton. More generally, let us say that a setE is preciseiff the image of
the equality functionE2 → Ω falls in the doubleton2 → Ω of true andfalse (we have already pointed out that this
arrow is injective). InΩ we havep equal to (the truth value of)p = true for all p (this means that the characteristic
functionΩ → Ω of true: 1 → Ω is the identity); and we definenot(p) to be (the truth value of)p = false (again, we
definenot : Ω → Ω to be the caharacteristic function of the singletonfalse: 1 → Ω); we defineand : Ω2 → Ω to be
the characteristic function of(true, true): 1 → Ω; and we definep =⇒ q, or p ≤ q (in Ω, for all p, q ∈ Ω: that is,
we are defining an arrowΩ2 → Ω) to mean(p ∧ q) = p. As for constructing theor : Ω2 → Ω arrow, the following
should work: take the arrowΩ3 → Ω given by(p, q, r) 7→ (p =⇒ r) ∧ (q =⇒ r), which gives an arrowh: Ω2 → ΩΩ

by abstracting the third (r) variable, and consider the constant functioni: Ω2 → ΩΩ with value the identity function
Ω → Ω (seen as a singleton1 → ΩΩ): the value ofh = i: Ω2 → Ω (that is, compose(h, i) with the equality relation
(ΩΩ)2 → Ω) is precisely the desiredor : Ω2 → Ω; it can also be defined as the characteristic function of the image of
the morphism2×Ω → Ω2 which sendsp ∈ Ω to (p, true) for the first component and to(true, p) for the second—the
problem with this definition is that it requires “the image” of a non injective function to be known (in a topos, this
comes logically later, so it would be begging the question). But let us abandon such logical subtleties and any pretense
at distinguishing, for example,p ∨ q (the logical statement) fromor(p, q) (its semantic interpretation, an element of
Ω). Anyway, a setE is precise iff for allx, y ∈ E we havex = y ∨ ¬x = y.

2003-10-18:055
The answer to the “am I just being utterly naïve” question in2001-12-18:011is “yes”: there are true statements

in N which are not decidable inPA∞ (the system obtained by Gödelizing Peano’s axioms to the point where they
cannot be Gödelized any further). Indeed, by induction onα we see thatZF provides a model ofPAα, hence proves
Consis(PAα), soZF is stronger thanPA∞. But evenZF does not settle all arithmetic questions (even though it proves
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Consis(PA), Consis(PA1) and so on): for example, it does not settleConsis(ZF), so in particularPA∞ does not.
This means thatPA∞ is not complete.

But is this reasoning correct?The induction is dubious at transfiniteα; the problem being that the way induction
breaks down, and how far it can go (the smallest countable ordinal that cannot be defined by a recursive well-order on
N, perhaps? or by one that is definable in the language of arithmetic?) is very unclear.

2003-10-18:056
Peano’s axiomsPA can be defined with no particular difficulty in intuitionist logic. We can define a Gödel

statementG in the language ofPA stating that “G is not a theorem ofPA using classical logic”, and a Gödel statement
G̃ in the same langage stating that “G̃ is not a theorem ofPA using classical logic”.

Now G is not a theorem ofPA (if PA is classically consistent, which we assume) in classical logic (for if it were
so, thenG would be true inN, hence unprovable, a contradiction), so it is also certainly not the case in intuitionist
logic; now this fact can be proven, with this very argument, withinPA even using intuitionist logic, except for the
assumption thatPA is classically consistent, so “G is not a theorem ofPA using classical logic”, i.e.G itself, is a
consequence ofPA∧Consis(PA) even using intuitionist logic. And certainly¬G is not a theorem ofPA (using
classical logic, anda posterioriusing intuitionist logic) ifPA is classically consistent, and this fact is provable within
PA even using intuitionist logic.

ConcerningG̃ we can say that̃G is not a theorem ofPA using intuitionist logic, providedPA is intuitionisti-
cally consistent (we write this̃Consis PA), and similarly for¬G̃. SoG̃ is a consequence ofPA∧ C̃onsis PA using
intuitionist logic.

Questions: isG̃ ∨ ¬G̃ a consequence ofPA using intuitionist logic? IsG̃ a consequence ofPA using classical
logic?

My ideas on the subject are still very fuzzy.

2003-10-18:057
(Herek is an arbitrary (commutative) ring.) We callk[ε] = k[t]/(t2) the ring of “dual numbers” (a horrible

terminology), and of course for any (commutative)k-algebraA we letA[ε] = A[t]/(t2) = A⊗k k[ε].
If X is a sheaf (for some reasonable topology) on the categoryAffScmk of affine k-schemes (see2002-03-

24:039 and 2001-12-21:013for some background), we callTX the sheaf taking a commutativek-algebraA to
(TX)(A) = X(A[ε]) (and morphisms in the obvious way): this is actuallyXSpec k[ε], where the exponent denotes an
internal Hom in the category of sheaves (over affinek-schemes). We callTX the(total) tangent bundleto X.

If X is an algebraic affinek-scheme, that is,X = Spec(k[t1, . . . , tn]/(f1, . . . , fr)) wheref1, . . . , fr are relations
on the variablest1, . . . , tn, thenTX is again of this kind, and can explicitely be described asTX = Spec(k[t1, . . . , tn,
t′1, . . . , t

′
n]/(f1, . . . , fr, df1, . . . , dfr)) wheredfj is the (formal) total differential offj , namelydfj = ∂fj

∂t1
t′1 + · · · +

∂fj

∂tn
t′n. Indeed,X represents the functor taking ak-algebraA to the set ofn-tuples(x1, . . . , xn) of elements ofA

satisfying the relationsf1, . . . , fr; andTX is the set ofn-tuples of elements ofA[ε], seen as(x1 +εx′1, . . . , xn +εx′n)
with x1, . . . , xn, x′1, . . . , x

′
n in A, satisfying the same relations, which gives us the stated relations onx1, . . . , xn,

x′1, . . . , x
′
n. Actually,mutatis mutandis, this still holds for an arbitrary (not necessarily finite) family of generators and

relations (and in particular,TX is affine wheneverX is affine).
TakingX to TX is functorial inX: if Y → X is a morphism of sheaves, then we get a morphismTY → TX

which on a givenk-algebraA is seen as the mapY (A[ε]) → X(A[ε]) given by the original morphismY → X (this
is also clear if we seeTX asXSpec k[ε]).

Now whenX is (representable by) an (affine)k-scheme, we have more: thenTX has a natural structure as anR-
module bundle overX (whereR = Spec k[t]); in other words, there are morphisms of identityX → TX, of addition
TX×X TX → TX, and of scalar multiplicationR×Spec k TX → TX, all defined overX, which satisfy the obvious
diagrams. Actually, identity and scalar multiplication can be defined in full generality: identityX → TX over ak-
algebraA is the mapX(A) → X(A[ε]) taking an elementx ∈ X(A) to its inverse image by the arrowA[ε] → A
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which sendsε to zero; scalar multiplicationR ×TX → TX over ak-algebraA is the mapA×X(A[ε]) → X(A[ε])
taking a scalarλ ∈ A and an elementx ∈ X(A[ε]) to the inverse image ofx by the arrowA[ε] → A[ε] which sends
ε to λε. However, there is no way to define additionTX ×X TX → TX in full generality: if we try to define a
morphismX(A[ε])×X(A) X(A[ε]) → X(A[ε]) canonically inA, we have no idea what to do given two elements of
X(A[ε]) whose images inX(A) (by the inverse image byA → A[ε]) coincide; now ifX is actually an affine scheme,
thenX(A[ε]) ×X(A) X(A[ε]) = X(A[η, ζ]) whereA[η, ζ] = A[y, z]/(y2, yz, z2) (this follows from the description
given above ofTX whenX is affine), and then we can use the arrowA[ε] → A[η, ζ] sendingε to η + ζ.

Now for the usual topologies on the category of affinek-schemes (e.g., fp[qc]), there exist sheavesX such that
X(A[ε])×X(A) X(A[ε]) does not coincide withX(A[η, ζ]): this means that for suchX the tangent bundleTX → X
cannot naturally acquire anR-module bundle structure. This is most unfortunate. This hints that it would make much
sense to look for topologies for which the two arrowsSpec A[ε] ⇒ Spec A[η, ζ] sending on the one handη to ε and
ζ to 0 and on the other handη to 0 andζ to ε, would be a covering. Question: is there a natural way to define a
topology that would allow such a covering (among many others, naturally)? So thatTX → X would naturally have
anR-module bundle structure for any sheafX for that topology (with, of course, the arrowsTY → TX deduced
from Y → X by functoriality, being morphisms)—among other properties. Note for further thoughts: what about the
canonicaltopology?

2003-10-26:058
To answer a question asked (more or less implicitly) in2003-10-18:057, the arrowSpec k[ε1] ] Spec k[ε2] →

Spec k[η, ζ] (wherek[εi] = k[x]/(x2) andk[η, ζ] = k[y, z]/(y2, yz, z2)) given byk[η, ζ] → k[ε1] × k[ε2] taking
η to (ε1, 0) and ζ to (0, ε2) is not a covering for the canonical topology (or, consequently, for any “reasonable”)
topology on the category of affinek-schemes. Indeed consider its pullback bySpec k[δ] → Spec k[η, ζ] (where again
k[δ] = k[t]/(t2)) given byk[η, ζ] → k[δ] taking bothη andζ to δ. Now we can describek[η, ζ]-algebras as data
consisting of ak-algebraA together with two elementsu andv of A such thatu2 = uv = v2 = 0; tensoring such
an algebra withk[ε1] × k[ε2] gives the direct product(A/(u)) × (A/(v)) of the quotientsA/(u) andA/(v); so if A
is k[δ] with u = v = δ as proposed, then that tensor is justk × k, and sinceSpec k → Spec k[ε] is certainly not a
covering, we lose.

To summarize, in the category of affinek-schemes, the arrowSpec k[ε1]]Spec k[ε2] → Spec k[η, ζ] is an effec-
tive epimorphism, but not auniversaleffective epimorphism (i.e., covering for the canonical topology). What happens
if we try to consider sheavesX such thatX(V ×U V ) ⇒ X(V ) → X(U) is exact for all effective epimorphisms
V → U rather than just universal effective epimorphisms? Do we get something nasty (I imagine the resulting cate-
gory of suchX is not a topos)? Certainly all representableX are of this kind (and perhaps even allk-schemesX?).
Uh...

2003-10-26:059
Let p be a prime. The Teichmüller map is a morphims of groupsη:F×p → Z×p such thatη(x̄) = x̄. Extend it to

η:Fp → Zp by taking0 to 0. Unfortunately this is not additive, but it is at least multiplicative:η(x̄ȳ) = η(x̄)η(ȳ).
Now any elementx ofQ×p can be uniquely writtenη(x̄0)pv(x)(1+p)α(x) wherev(x) is of course the valuation of

x andx̄0 ∈ F×p is the reduction modp of p−v(x)x, andα(x) ∈ Zp. This describesQ×p as isomorphic toF×p ×Z×Zp.
Define a symbold

∗
dp :Qp → Qp by letting d∗x

dp = η(x̄0) [v(x) + (v(x) + H α(x))p] pv(x)−1 (1 + p)α(x)−1 for x 6= 0
andd∗0

dp = 0; here,H ∈ Qp is some constant of definition (“fiddle factor”),H = d∗(1+p)
dp . This symbol is not additive,

but it satisfiesd
∗

dp (xy) = x d∗y
dp + d∗x

dp y for all x, y ∈ Qp. PerhapsH = 1 is the most natural choice—and perhaps not.
It does notseempossible (even by fiddling with the value ofH) to obtain the most naïve Taylor formula (for

x ∈ Zp)

x = η(x̄) + η

(
d∗

dp
x

)
p +

1
2

η

(
d∗2

dp2
x

)
p2 +

1
6

η

(
d∗3

dp3
x

)
p3 + · · ·
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—but note that the formulais valid modp2 so long asH is 1 modp. Since1
2η(t̄) is notη(1

2 t) and neither isd
∗

dp ( 1
2 t)

equal to1
2 (d∗

dp t), there are dozens of ways the formula could be (less “naïvely”) written: is it perhaps true that for an
intelligently chosenH and an intelligent way of writing the formula, we have a positive result not just modp2?

Another natural question: how about demanding that the image ofQ by d∗
dp falls inQ (seen withinQp, naturally),

or perhaps at least the algebraic closure ofQ in Qp?

2003-11-18:060
What difficulties do we encounter in trying to construct relativistic quantum field theory in the most naïve way

possible? Assume, say, we wish to perform second quantization of a real self-interacting scalar fieldφ satisfying the
field equation(¤2 + m2)φ + αφ3 = 0 (here,¤2 is the Dalembertian given by¤2 = ∂2

∂t2 − ∂2

∂x2 − ∂2

∂y2 − ∂2

∂z2 , and

α > 0 is a self-interaction parameter), which comes from a Lagrangian densityL = 1
2gµν ∂φ

∂xµ
∂φ
∂xν − 1

2m2φ2− 1
4αφ4:

if not too much nonsense lies behind variational equations at the core, then the field equation should state exactly the
fact thatφ is such that

∫ L d4x is extremal (make mathematical sense out of this!); or shouldφ be constrained so that∫
φ2 d4x = 1?

Now basically we would like to construct a Very Large (Indeed) Hilbert space of functions having one variableξx
for each space-time pointx. Then the world state is determined by a unitary vectorΦ in this space, and for eachx, φ(x)
becomes a linear operator1√

2
(ξx + ∂

∂ξx
) on acting onΦ (probably highly unbounded): note thatφ†(x) = 1√

2
(ξx −

∂
∂ξx

) (assuming the space is any bit sane, which, of course, is a very dangerous assumption) so thatφ(x)φ†(y) −
φ†(y)φ(x) = δ(x − y) for some meaning ofδ and up to some normalization. (This is a lot of hand-waving, now, of
course.) The vacuum state would be

∏
x e−

1
2 ξ2
x , assuming there were a way for this product to make sense (probably

by defining all other functions somehow with respect to this one). Now can we make something of the Lagrangian
variational principle? Is there some way to make the whole thing a little more meaningful on mathematical grounds
(I’m not asking for a solution to relativistic QFT, of course, merely a way to state the problem).

2003-11-18:061
A typical independence result in the absence of Choice: it is consistent that there exists an infinite set of reals

without a(n infinite) countable subset. How do we do this?
As a forcing condition we take the partially ordered setP of finite functionsω2 → 2, partially ordered by

inclusion (that is,p ≤ q, or “p is stronger thanq” iff p ⊇ q as a finite set of pairs). EmbedP in the boolean algebra
B of regular open sets of2ω2

(with the product topology) by takingp to the clopen (and hence regular open!) sete(p)
consisting of all functionsω2 → 2 which extendp: evidently this embedsP as a dense subset ofB \ {∅} (the clopen
sets in question form a basis for the topology of2ω2

). For commodity we will write> and⊥ for the maximal and
minimal elements ofB. We construct the boolean-valued modelV B as usual. Forn ∈ ω we letxn be the name which
takes anyk ∈ ω (or rather, the canonical nameǩ for k) to the truth value{(n, k, 1)} ∈ P : thus{(n, k, 1)} ° ǩ ∈ xn

(and, of course,{(n, k, 0)} ° ǩ 6∈ xn). After quotienting by a generic ultrafilter, thexn determine a sequence of
generic reals (it is, of course, equivalent to define a single generic real or anω-sequence of such, sinceω2 can be put
in “canonical” bijection withω; the point of using a sequence appears when we start introducing permutation groups).

Now consider the groupG = S(ω) of bijectionsω → ω (which acts onω by σ · n = σ(n)). MakeG act on
B by σ · u = {f : ω2 → 2 : ((n, k) 7→ (f(σ(n)), k)) ∈ u} (and onP by σ · {(n, k, v)} = {(σ(n), k, v)} so that
σ · e(p) = e(σ · p)). DefineH the set of subgroups ofG which contain the fixator subgroup of a finite subset of
ω: thenH is a normal subgroup. As usual, we say that an element ofB is H -symmetric, or simply, symmetric,
when its stabilizer is inH . And similarly for an element ofV B (more, precisely, a name); and we define hereditarily
symmetric names in the obvious manner. Evidently,xn has a symmetric (and therefore hereditarily symmetric) name:
its stabilizer is the set ofσ ∈ G which fix n (and more generallyσ · xn = xσ(n)). The nameX, which takesxn to>
for all n, is also symmetric (and hence hereditarily symmetric). And> ° xm 6= xn for all m 6= n because below any
forcing condition it is possible to forcè 6∈ xm and` ∈ xn for some` ∈ ω. ThereforeX is infinite (in the generic
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ultrafilter quotient, or simply in the boolean-valued model in the sense that the truth value of “X is infinite” is>), so
it is also in the symmetric model.

Now assume there exists some hereditarily symmetric nameh and some forcing conditionp0 ∈ P such that
p0 forces “h is an injectionω → X”. Let E be a finite subset ofω such that the fixator ofE stabilizesh. Since
p0 forces “the image ofh is not contained in{xn:n ∈ E}” (note that this makes sense sinceE is finite), there is
p ≤ p0, i ∈ ω andn 6∈ E such thatp ° h(i) = xn. Now findσ ∈ G such thatσ fixesE, σ · p is compatible withp
andσ(n) = n′ 6= n (it suffices to take forσ the permutation which exchangesn with somen′ greater than anything
mentioned inE or p): then ifq = p∪ (σ · p) is the conjunction ofp andσ · p (which makes sense sincep andσ · p are
compatible), we see thatq ° h(i) = xn andq ° h(i) = xn′ 6= xn, a contradiction.

Therefore, in the symmetric model,X, although an infinite set of reals, has no (infinite) countable subset.
It is instructive to see what happens if we try to show that (in the symmetric model)X cannot be totally ordered

(an absurdity, since it is a set of reals, so it has a canonical total order!): we take a hereditarily symmetric namet and
some forcing conditionp0 ∈ P such thatp0 forces “t is a total order onX”. Again, letE be a finite subset ofω such
that the fixator ofE stabilizest. Then findp ≤ p0 andm,n 6∈ E such thatp ° (xm, xn) ∈ t. Only, this time: ifσ
is the permutation which exchangesm andn, there is no reason thatp andσ · p should be compatible; and if we seek
a permutationσ such thatp andσ · p are compatible, we can exchangem with some largerm′ or n with some larger
n′, but there is no reason why we should be able to exchangem andn (so as to get a contradiction). In fact, Lévy has
shown that every set can be totally ordered in this model. We can get a set that cannot be totally ordered, however, by
considering a set of sets of reals (this is classical).

2003-11-30:062
Recall that the probability distribution function of a Gaussian variable with mean0 and standard deviation1 is

1√
2π

e−x2/2.
If X and X ′ are independent Gaussian variables with mean0 and standard deviation1, then the

expectation ofmax(X, X ′) is 1√
π

(according to Mathematica, or an easy computation), which is approximately
0.56418958354775628694807945. The expectation of the maximum ofthree independent such variables is3

2
√

π
(according to Mathematica), or approximately0.84628437532163443042211918. However, the expectation of the
maximum of four independent variables does not appear to be expressible in a simple form (at least, it is almost
certainly not a rational over square root of pi, and it is also unknown to the Plouffe inverter); an approximate
value is1.0293753730039641320569866. Similarly for five independent variables in which case the value is close
to 1.1629644736405196127722680.

Now consider the game where a player, whose goal is to maximize his score, must choose between two inde-
pendent Gaussian variables with mean0 and standard deviation1, but only the value of the first variable is known
when the choice must be made. That is, the player must choose between keepingX (whose value is then known)
and takingX ′ (whose value is unknown). Evidently (?), the optimal strategy consists of keepingX when its value
exceeds the expected value forX ′, which is0: that is, takeX when it is positive, otherwise takeX ′. If this strategy is
followed, the expected score is1√

2π
(because the expectation of a Gaussian variable of mean0 and standard deviation

1 subject to the condition that it be positive is
√

2
π ). This is approximately0.39894228040143267793994606. Next,

suppose the player has three chances instead of just two: he is shown a first Gaussian value,X, and can choose to
stop here or move on to a second one,X ′, which he can either keep or take the thirdX ′′, which he then cannot reject.
Then his optimal strategy is to keep the first variable,X, just in case its value exceeds1√

2π
, otherwise demand to

see the secondX ′′, and choose that when its value is positive. The expectation for the final score is approximately
0.62974579055999158292799866.

Another interesting procedure in this line of thought is the followinggame of appeal. This time, there are two
players, the goal of the first player (the plaintiff) being to maximize the final score (damages) whereas the goal of the
second player (the defendant) is to minimize it. A first Gaussian variableX of mean0 and standard deviation1 is
dealt (the first hearing). After this, the plaintiff may choose to appeal or not: if he does, another variableX ′, with
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the same distribution and independent ofX, is dealt. Whether or not the plaintiff has appealed, the defendant may
then choose to appeal: if he does, another variable (X ′ or X ′′, whichever it may be) is taken, again independent of the
previous one(s) and with identical distribution. Lastly, if the defendant has appealed but the plaintiff has not appealed
yet, the latter may appeal, which gives a third variableX ′′. The last chosen variable is the final score. Then the optimal
strategy for both players is as follows: plaintiff appeals if the first scoreX is less than− 1√

2π
(because appealing puts

the defendant in the position of getting two chances, whereby by the previous analysis his best expectation is− 1√
2π

),
whereas defendant appeals if the first scoreX is at greater than 1√

2π
. (Actually, this is apetitio principii, and this

should be checked: but it seems that this is indeed the best possible strategy for both players.) A computation (largely
done in Mathematica, but not too hard by hand either) shows that the variance of the overall score is1 − e−1/(4π)

π or
approximately0.70603876009582322907036928: that this is less than1 is satisfactory, since the whole point behind
the appeals process is to make the system more “just” (i.e. as close as possible to the ideal value0); and the score’s
expectation is of course zero. Incidentally, the expected number of trial hearings (variables dealt in the whole process)
is 1

2 (5− 3 erf( 1
2
√

π
)), numerically barely more than two.

Now consider the same questions but changing the distribution to a uniformly distributed variable between−√3
and

√
3 (so that it also has expectation0 and variance1). Then the expectation of the max of two independent such

variables is3
7

√
3 — this is better than in the Gaussian case. For three variables it is9

14

√
3, for four it is 69

91

√
3 and for

five it is 75
91

√
3. Playing the game of maximizing the score, with only two chances, gives an score expectation of1

4

√
3

— again better than the Gaussian case. With three chances,25
64

√
3 — still better than for Gaussian (but we know that

in the limit it will get worse, since in the Gaussian case the limit for infinitely many trials must tend to infinity whereas
here it is

√
3). In the appeals game, the variance of the overall score is49

64 or 0.765625 (and the expected number of
hearings is178 ).

Fascinating.

2003-11-30:063
A clarification (thanks to Joël Riou for some remarks on this). Leti: X ↪→ PN be a closed immersion, and

L = i∗O(1) the very ample invertible sheaf associated to the situation. We say thatL is the sheaf of “hyperplane
sections” ofX embedded inPN throughi, but thisdoes not meanthat every global section ofL is indeed determined
by a hyperplane inPN : that is, the canonical mapH0(PN , O(1)) → H0(X, L ) need not be surjective.

Here is an example: consider the mapi:P2 ↪→ P4 taking(T0 : T1 : T2) to (T 2
0 : 2T0T1 : T 2

1 + 2T0T2 : 2T1T2 :
T 2

2 ) (this is a form of the Veronese embedding). ThenL = i∗O(1) is the sheafO(2) on P2 of (all) homogeneous
polynomials of degree2 in T0, T1, T2, so for exampleT 2

1 − 2T0T2 is a global section ofL onP2, whereas it is not a
hyperplane section in the naïve sense: the image byi of the plane conicT 2

1 − 2T0T2 = 0 is a (rational) quartic curve
in P4 which is not contained in any hyperplane.

Let us examine the previous example in a little more detail and explainwhy, in fact,T 2
1 −2T0T2 ∈ Γ(P2, i∗O(1)).

First of all we have the sheafi−1O(1), which is a sheaf ofabelian groups(or k-vector spaces,k being the base field)
onP2, not ofOP2 -modules, namely the inverse image ofOP4(1) by i as a sheaf of abelian groups (ork-vector spaces);
this is actually a sheaf of modules overi∗OP4 (a sheaf of rings); to definei∗O(1) we must then tensori−1O(1) with
OP2 overi∗OP4 . Now T 2

1 − 2T0T2 is not inΓ(P2, i−1O(1)). Nor can it be written as the tensor product of twoglobal
sections ofi−1O(1) andOP2 . However, on each of the open setsT0 6= 0, T1 6= 0 andT2 6= 0, we can define a section
of i∗O(1), respectively byT 2

0 ⊗ (T 2
1

T 2
0
− 2T2

T0
), (T 2

1 + 2T0T2)− 4(T0T1)⊗ (T2
T1

) andT 2
2 ⊗ (T 2

1
T 2
2
− 2T0

T2
): these sections

glue correctly on intersections, hence define a global section ofi∗O(1).
Reverting to a more general picture, letL be any invertible sheaf on a proper (integral) varietyX. Given any

non-zero global sectionss0, . . . , sN of L on X, we can define a rational mapϕ: X 99K PN by takingx of X to
(s0(x) : · · · : sN (x)) (which makes sense up to scalar, exactly what we need), provided not all ofs0, . . . , sN vanish
at x. This is defined as a morphism provided thesi never all vanish simultaneously: this means exactly that thesi

generateL in the sense that the obvious morphismON+1
X → L is an epimorphism (as a morphism of sheaves of

OX -modules). Moreover,ϕ is a closed immersion when it separates points and tangent vectors: this means (well, at
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least forX smooth...) thatϕ is injective and that its differential is injective everywhere. The latter condition means
that the matrix of partial differentials ofsi (with respect to some local system of parameters) is of rank the dimension
of X plus one (the “plus one” comes from the fact that the direction colinear to(s0(x), . . . , sN (x)) is lost).

Of course, we can consider for thesi a k-basis of all global sections ofX. We then say thatL is generated by
its global sections when for allx of X there is as ∈ Γ(X, L ) which does not vanish atx: soL defines a morphism
X → P(Γ(X, L )) (and more generally any invertible sheafL having at least one non-zero global section defines
a rationalX 99K P(Γ(X, L ))); thenL is very ample precisely when this morphism is a closed immersion. Note
however, as seen above, that it isnot truethat any morphism fromX to projective space is of this form; sometimes
the target projective might be smaller (but certainly it can be written as the composition of such a morphism by a
P(Γ(X, L )) 99K PN which happens to be defined on all the image ofX).

Some lines of further thought:
• Find an (illuminating) example of aL which has non-zero global sections but is not generated by them.
• The global sectionsT1T2, T0T2, T0T1, T

2
0 , T 2

1 of OP2(2) do not generate the latter; but whatdo they generate?
I.e., what is the image of the morphism of sheavesO5

P2 → OP2(2) which they define? The rational map is a
closed immersion of the blowup ofP2 at (0 : 0 : 1) within P4.

• Let L be an invertible sheaf onX generated by its global sections: what can be said aboutk-vector subspaces
E ⊆ Γ(X, L ) such thatE generatesL ? (From the point of view of their combinatorial structure.) Same
question, assumingL is very ample, about thoseE for which additionally the morphism thus defined is a closed
immersion?

• What about rational maps? Can we give sense to them being a closed immersion of some kind? (Of course, it
makes sense to ask for the map to be generically a closed immersion: can we demand more, something which
would generalize being a closed immersion in the case of morphisms?) What is a “large” (or is it “big”?) invertible
sheaf?

2003-12-06:064
Let us correct2001-12-15:005and try to get the correct definition of the projective space functor once and for

all.
Let k be any (commutative) ring.
If n ≥ 0, the projectiven-space functor overk is the (covariant) functor from the category ofk-algebras to the

category of sets which takes ak-algebraA to the setPn(A) defined as follows. Consider data(f1, . . . , fm) ∈ Am (for
somem) such that thefj generate the unit ideal inA and, for eachj, data(xj,0, . . . , xj,n) with eachxj,i belonging
to the localizationAfj of A which invertsfj , such that(xj,i)i generates the unit ideal ofAfj for all j and for allj, j′

the two families(xj,i)i and(xj′,i)i seen inAfjfj′ (by the obvious canonical maps) coincide up to multiplication by a
unit (which depends onj, j′ but not oni); and identify two such data((fj), (xj,i)) and((gk), (yk,i)) when their union
is a data satisfying the same conditions, in other words when for eachj, k the two families(xj,i)i and(yj,i)i seen in
Afjgk

coincide up to multiplication by a unit; then the set of such data with such identifications is precisely what we
call Pn(A). If ϕ: A → B is a morphism ofk-algebra, we definePn(ϕ) by taking data((fj), (xj,i)) as above to the
obvious image((ϕ(fj)), (ϕ(xj,i))) (recall that localization is functorial, which lets us defineϕ(xj,i)). We can actually
simplify the above definition slightly by observing that multiplying thexj,i by some power offj (depending only on
j and not oni) we can assume that they are all inA.

Now rather than consider data(xj,0, . . . , xj,n) we can consider the kernel of the linear form onAn+1
fj

given by
(ξ0, . . . , ξn) 7→ xj,0ξ0 + · · · + xj,nξn. It should be possible to see why these kernels determine the data up to the
prescribed equivalence relations, nor why it is possible to find a globalH ⊆ An+1 which determines all the kernels
in question by specialization. (This all shouldn’t be difficult: for example, one important ingredient is that modules
descend correctly — a family of modulesMj over theAfj with compatibility isomorphisms satisfying the nice cocycle
condition determines a moduleM overA.) So the point is thatPn(A) is the set of sub-A-modulesH of An+1 such that
An+1/H is locally free of rank1 in the sense that for somef1, . . . , fm generating the unit ideal inA the localizations
inverting thefj are all free of rank1.
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“Locally free” does not mean “free” (even over a ring — affine scheme — that is). The canonical example is to
takeA = Z[

√−5], and forH the sub-A-module ofA2 generated by(2, 1 +
√−5) and(1 − √−5, 3): thenA2/H

(which consists of the classes of elements of the form(0, y) and(1, y), and can be identified with the ideal generated
by 2 and1 +

√−5 by taking(x, y) ∈ A2 to (1 +
√−5)x− 2y) is locally free of rank1 (it is free, say, after inverting

2 or 3), but not free.
More generally, ifE is ak-module, we can defineP(E) to be the functor taking ak-algebraA to the setP(E)(A)

of sub-A-modulesF of E ⊗k A such that(E ⊗k A)/F is locally free of rank1.
Note: for finitely presented modules, “locally free” and “projective” are synonymous.

2003-12-07:065
Some quick notes about intuitionist logic (also see2002-12-21:054).
For all natural numbersa andb we have(a < b) ∨ (a = b) ∨ (a > b). This is proved by induction (for example,

by induction onn it is easy to prove(n = 0) ∨ (n ≥ 1), wheren ≥ 1 means thatn is the successor of some natural
number). Therefore the same statements holds for all integers, and for all rationals. Again: a rational number is either
zero, or non-zero (in which case it is invertible). In topos semantics, the object of rationals is represented by the
constant sheaf with valueQ, with the obvious addition and multiplication.

A real number can be defined as a pair(L, R) of sets of rationals, such that:
• If r ∈ R ands > r thens ∈ R; if r ∈ L ands < r thens ∈ L.
• If r ∈ R then there existss < r such thats ∈ R; if r ∈ L then there existss > r such thats ∈ L.
• There existsr ∈ R; there existsr ∈ L.
• There does not existr such thatr ∈ R andr ∩ L (that is,R ∩ L = ∅).
• If r > s then eitherr ∈ R or s ∈ L.

In the topos of sheaves over a topological spaceX, the object of real numbers is represented by the sheaf of continuous
functions toR with the usual topology.

The reals form (with the straightforward addition and multiplication) a ring containing the rationals (and even a
local ring in the sense that for all realx eitherx or 1 − x is invertible). We can define order relations as follows: let
x > 0 when0 ∈ R and letx ≥ 0 whenr > 0 for all r ∈ R (which is exactly equivalent to requiringr ≥ 0 for
all r ∈ R), and extend these by translation. Letx ♦ y whenx > y or x < y: thenx ♦ 0 means exactly thatx is
invertible. Note that ifx < y are reals then there exists a rationalr such thatx < r < y. However,x ≤ y does not
mean the same as(x = y) ∨ (x < y), which is probably not surprising, but evenx < y does not mean the same as
(x ≤ y) ∧ ¬(x = y), which is perhaps a bit more surprising, andx ♦ y is stronger than¬(x = y). It is not true that
for all realx andy we have(x ≤ y) ∨ (x ≥ y); however, for all realh > 0 it is true that(x < y + h) ∨ (x + h > y).

It is true that for realx, if ¬¬(x = 0) thenx = 0. Indeed,x = 0 is equivalent to−h < x < h for all rational
h > 0 (this is easy to check on the cuts, because for allh > 0 we must have eitherx < h or x > 0); now if h > 0 and
¬¬(x = 0) then we must have−h < x < h (again because eitherx < h or x > 0 and the latter is impossible). Even
stronger:¬(x ♦ 0) impliesx = 0.

It would be naïve to hope that a non-empty (in the sense “having an element”) bounded set of rationals should
always have a least upper bound and a greatest lower bound in the reals, and it would be naïve to hope that a continuous
real function (“continuous” in the ordinary∀ε∃δ sense)f such thatf(−1) = −1 and f(1) = 1 should cancel
somewhere. We can easily give examples in the topos of sheaves overX = [−1; 1]. For a set of rationals with no
lower bound defineχ(r) = X if 0 < r < 1 andχ(r) = [−1; 0[ if −1 < r ≤ 0, χ(r) = ∅ in all other cases: with
the obvious abuse of language, this defines the characteristic function of a subsetU of the internal rational interval
]− 1; 1[, andU is even open (in the sense that for allr ∈ U there existsh > 0 such that]r − h; r + h[⊆ U ), contains
]0; 1[, but does not havea a real lower bound. For a continuous and even monotone function as stated, takeF (ξ, x),
for ξ ∈ X = [−1; 1] and realx, so thatF is continuous,F (ξ, ·) monotone nondecreasing for allξ, andF (ξ, x) = 0
exactly whenξ ≤ 0 andx = − 1

2 , or ξ ≥ 0 andx = 1
2 , or ξ = 0 and− 1

2 ≤ x ≤ 1
2 : certainly we can find suchF , and

internally it defines a continuous function on the reals, nondecreasing (in the sense thatx ≤ y impliesF (x) ≤ F (y))
but for which it is not true that∃z(F (z) = 0).
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On the other hand it is true that for every continuous increasing function (in the sense thatx < y implies
F (x) < F (y)) with F (−1) = 1 andF (1) = 1 there exists az with F (z) = 0.

Note that ifx1, . . . , xk are real numbers (here,k is a naïve natural number), they have a well-defined least upper
bound and greatest lower bound. In particular,|x| = sup(x,−x) is well-defined, andx ≥ 0 is equivalent to|x| = x;
andx ♦ 0 is equivalent to|x| > 0. Note thatx 7→ |x| is definitely not differentiable at0: there exists nò such that

for all ε > 0 there existsδ > 0 satisfying0 < |h| < δ =⇒
∣∣∣ |h|h − `

∣∣∣ < ε. So while it cannot be proved that there
exists a discontinuous real function (Brouwer’s famous theorem), it can be proved that there exists one which is not
differentiable: this also means that the line object of synthetic differential geometry is not the real numbers object in
any sense.

2003-12-07:066
Some more intuitionist mathematics (see2002-12-21:054and possibly2003-12-07:065).
Need to check the following.
If X is a set, we can define the setX̃ of P ⊆ X such that∀x∀y(x ∈ P ∧ y ∈ P =⇒ x = y) and¬¬(P = ∅)

(that is,¬∀x¬(x ∈ P )). Define an equivalence relation oñX by P ∼ Q iff ¬¬(P = Q), and letX̄ = X̃/ ∼.
Define a mapX → X̄ by takingx to {x}. This should be the internal vision of the construction which, in the topos
context, takes an objectX to its associated sheaf for the¬¬ topology. SoX̄ is in many ways the “best classical object”
associated toX. It seems that ifX has some algebraic structure, thenX̄ also inherits that structure.

Now if R is the real numbers object, then it injects inR̄ (since¬¬(x = y) impliesx = y for reals, see2003-
12-07:065), and the latter is itself a ring with an order on it: it would be interesting to check what properties it has,
analogously to those ofR, and perhaps see whether it is better behaved. (In the topos of sheaves over a topological
spaceX, R̄ is represented by the sheaf of real-valued continuous functions on adense open subset.)

2003-12-07:067
Still concerning intuitionist mathematics (also see2002-12-21:054and possibly2003-12-07:065and2003-12-

07:066).
Rumor (or folklore) has it that it is consistent that all functionsN → N are computable (recursive). How is this

done?
Note that it is not possible for all subsetsE ⊆ N to be recursively enumerable: indeed, the standard diagonaliza-

tion argument works as usual (letU be a universal Turing machine, and letE be the set ofk such thatU(k, k) does not
terminate: if there existsn such thatE is the set ofn for whichU(n, k) terminates, thenU(n, n) terminates if and only
if it does not terminate, a contradiction). But a non-r.e. setE, if all functionsN→ N, cannot satisfyE∪ (N\E) = N,
otherwise the function which is1 onE and0 onN \ E would be defined on all ofN whereas it is not computable.

2003-12-07:068
A very open question: we know that for alln ≥ 1 the canonical injectionPn(Q) → Pn(R) has dense image.

But how do we proceed in practice (computationally, that is) to approximate a pointx ∈ Pn(R) by a point inPn(Q)
of small height (the height being the max of the absolute values of integer homogeneous coordinates for the point in
question)? Forn = 1 we have Euclid’s algorithm: can it be generalized in some way?
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