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2001-12-15:001

Let 7 be a ultrafilter oriZ. Say that a subset of Z is green(for lack of a better name!) relative t& iff for
everyk € Athe translatiom —k = {{ € Z : {+ k € A} belongs toZ . Evidently,& andZ are green (relative to any
ultrafilter onZ); in fact, it is easy to see that the green subsefg (klative to a given ultrafilter o) are the open
sets of a certain topology (the “green topology”)®/n

If % is principal, then green subsets Bfare easy to describe: far € Z, let %, be the set of all subsets of
Z containinga—then every subset & is green relative t@ (i.e. the green topology relative t# is the discrete
topology onZ), and, in general, green subsetsZofelative to%, are arbitrary unions of sets of the forfi + an :
n € N} (i.e. these setd\-indexed arithmetic sequences of reagpifiorm a basis for the green topology relative to
U,).

Say that a ultrafilterZ on Z is fencediff for every elementl’ € % there exists a green subsetléfbelonging
to % . Note that this is the same as demanding that for eVery % containing0 there exist a green subset Bf
containing0 (indeed, forz = %, both conditions are satisfied; fé&¥ = %, with a # 0, neither condition is
satisifed, and forzz a non principal ultrafilter, both conditions are easily seen to be equivalent). Thus, a principal
ultrafilter %, is fenced iffa = 0.

To say that a ultrafilte?/ is fenced is precisely the same as to say #as the set of unpointed neighborhoods
of 0 for the green topology relative t& .

Question: what about non principal ultrafilters? Are some of them fenced? Are all of them fenced? | have no
idea on how to approach the question.

2001-12-15:002

If X is a set and, for every € X, we are given a filte¥’,, on X which is coarser than the principal ultrafilter of
all subsets ofX containingz (in other words, every element &f, containsz), then we can define a topology da
by saying that a subset of X is open iff for everyx € A we haveA € ¥,. Unfortunately, it isnot truein general
that ¥, is the set of neighborhoods offor the topology in question. Stupid counterexampleXet N, let 7, be the
trivial filter {N} except wherk = 0 where it is the filter of alinfinite subsets oN containing0; then any non-empty
subset ofN which is open for the topology defined by thi¢ must clearly beN itself, so the topology is indiscrete
(aka coarse), and; is notthe set of neighborhoods 6f..

Is there an easy criterion, or at least a useful sufficient condition, which enables one to conclugedliadeed
the set of neighborhoods effor all x € X? It seems that Steen and Seebacbunterexamples in Topolopggften
define topology on various spaces by describing their filters of neighborhoods: how can one be sure that these are
adequate (or should | say “fenced”?) in the above sense?

Note that the question iB001-12-15:001s to study the situation whet® = Z and¥; is the translation by of
a certain ultrafilterZz on Z (or, more precisely, of the filter of all elements®f containing0, which is the same as
the filter formed by adding to every element o?/).

2001-12-15:003

A triviality: if G is a group of finite type (i.e. having a finite generating family) then each generating family has a
finite generating subfamily. (Proof: express each element of a finite generating family in terms of the given generating
family; then a finite number of elements of the latter will have been used, and they gergraigarticular, if £ is a
free group with basi®3, andF is of finite type, therB is finite. (Proof: B generateg’ (is this a tautology or simply a
well-known fact?), so by the above a finite subseBajenerate$’; but then the other elements Bfcan be expressed
in terms of these finite number of elements, and, sifiée free, there are no other elements ¢ finite.)

Not a triviality: if G is a finitely presented group, then given any presentatio efith a finite number of
generators, we can find a finite subset of the relations which form a presentationiais is proved in Rotmarin
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Introduction to the Theory of Groupemma 11.84. In other words (using the above trivialities in the translation), the
kernel of a surjective morphism from a free group of finite type to a finitely presented group, is of finite type. It would
be tempting to combine the two facts and state that i a finitely presented group, then givany presentation
of G we can find a finite subset of the generators and a finite subset of the relations (dealing only with the selected
generators!) which form a presentation@f is this true? (I doubt it.)

Update 2003-12-06:indeed, the assertion in question is false, as Yves de Cornulier points out to me. Take
(zi)ien|z1 - 23 27" =1, 241 -2, - 27y = 1foralli > 1). Visibly this is a presentation of the cyclic group with
two elements (and the latter is certainly of finite presentation), but any finite sub-presentation gives an infinite group
(or the trivial group).

2001-12-15:004

If X is a, say, noetherian, scheme (over a h&seand& a locally free coherent sheaf oxj, then we have an
associated projective bund¥ &) (see Hartshorneilgebraic Geometry87, and EGA, II, 84). Further, we have a
“fundamental sheaftp ) (1), which is a line bundle of?(£). Essentially, it is a way of “transforming” an arbitrary
vector bundlef into a line bundle; in particular, i is alreadya line bundle, then the canonical projectiaiP?(.¥) —

X is anisomorphism, and*.# is (canonically isomorphic tafp ) (1). (In particular,dps (1) need not be ample!)

We can then transfer the terminology of line bundles to arbitrary vector bundles: sa§ ithample onX iff
Op(s)(1) is ample onP(&), for example. It also makes sense to talk about very ample vector bundles (when there
exists an immersionover.S of P(&’) in P(.%) for .# some vector bundle oveéi—say.S is the spectrum of a field for
simplicity—such thatps) (1) = i*(Op(#)(1))). Question: does a very ample vector bundle somehow determine an
immersion ofX itself in a projective space? (In particularfis proper smooth over some field and has a very ample
vector bundle, is it true thaX is projective?)

This is very confused, and there are many questions floating around. EGA does things in “full generality” as
usual, of course, and Hartshorne in a much more restricted context, and it is not even completely obvious how far the
definitions coincide.

2001-12-15:005

Still concerning projective space (see a291-12-15:004n this subject): if is any ring, and® anyk-module,
thenP(FE) is (see EGA, Il, theorem 4.2.4) the set of submodilesf £ such thate/ F' is free of rankl (2003-12-06
no, this iswrong, it should read “locally free” or something; s2803-12-06:06)t More preciselyP(FE) is the functor
which takes &:-algebraA to the setP(E)(A) of submodules of E ®; A such that £ ®; A)/F is free of rankl
(as anA-module); and which takes a morphistn— B of k-algebras to the map(E)(A) — P(E)(B) which takes
F C E ®; Atotheimage of” ® 4 B inside E @ B. In particular,P; (A) is the set of submodulés of A2 (the free
A-module of ranke) such that4d?/F is free of rankl (andP;(A) — P} (B) takesF to the image off’ @ 4 B inside
B?); and the map\; — P} is given by the natural map}(4) — Pi(A) which takesa € A (viewed inA} (A),
which is precisely the underlying set #) to the submodule ofl?> spanned by1,a). And more generally, it is clear
how A} maps tdP}, inr + 1 canonical ways.

2001-12-15:006

Let X be any set, ané any field. Consider the ring* of all k-valued functions o, with pointwise addition
and multiplication. Ifp is a prime ideal ofcX, then the se%” = {A C X : 04 € p} is a ultrafilter onX, where
04 € k% is defined by0(z) = 0if z € Aand04(z) = 1 otherwise; furthermore, it is then clear thatoincides
precisely with the set of alf € kX such thatZ(f) = {x € X : f(x) = 0} belongs to7. But this clearly implies
thatp is maximal. So all prime ideals df* are maximal:kX is zero-dimensional. (Recall that a ring is artinian,
i.e. satisfies the descending chain condition, iff it is noetherian, i.e. satisfies the ascending chain condition, and zero-
dimensional, i.e. every prime ideal of it is maximal.) Thus, we have a natural identification (as topological spaces)
BX = Spec(kX) = Spm(k¥), whereg denotes Ston&ech compactification (in the case of a discreteXéethis
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is the set of ultrafilters of<'), andSpec(k”~) is the set of prime ideals df* andSpm (k) the set of its maximal
ideals. In particular, note that the StoBech compactification of any discrete set is naturaltystheme for any field
k (“naturally” in the sense that for any map of séfs— X’ the morphisnSpec(k~) — Spec(k*") deduced from the
obvious morphism of rings*" — k% coincides, as far as the underlying topological map goes, with the morphism
BX — pBX' of pushforward of ultrafilters obtained by functoriality of the Stddech compactification). Also note
thatSpec(k*) is Hausdorff. Ifp € 3X corresponds to a ultrafilte, then the residue fieldl(p) of Spec(k™) atp is
precisely the ultraproduct of copies ofk reduced byZ .

Note that if we considered instead the rikigf! of k-valued functions oX” with finite image then we would also
have the identificatio X = Spec(klX]) = Spm(k[X]), but this time with the residue field 8pec(kX)) atp € pX
being simplyk.

2001-12-15:007

(This more or less continug901-12-15:009

The obvious “next step” would be to considgra topological space, arnd the ring oflocally constank-valued
functions onX (i.e. continuous functions fronX to k, wherek is given the discrete topology). Such a function takes
each value on a clopen subsetdfand given a prime idealof X we are led to conside® the set of clopet C X
such that 4 belongs tagy. Then% is a ultrafilter in the boolean algebra of clopen subset® pdndp is precisely the
set of all f € kX such thatZ(f) (which is clopen) belongs t& . Again, every prime ideal of X is maximal: we
haveSpec(kX) = Spm(k*), but it does not in general coincide with the Stabeeh compactification ok .

Call pX this set of ultrafilters on the boolean algebra of clopen subsels, @ind topologizep X by declaring
the{%Z € pX : A € } for A clopen inX to form a basis of closed sets; note that these sets are actually clopen
in pX. And we mapX to pX by sendinge € X to the set7, of clopenA C X such that: € A: this is evidently
continuous and has a dense image; furthét,is compact (Hausdorff). By the universal property of the StGeeh
compactification, it follows thafy — pX factors asX — BX — pX, and the latter map is surjective (since its
image is dense and closed). In fact, it can be described preciselys X corresponds to a z-ultrafilte¥ (that is,

a ultrafilter on the lattice of zero-sets &f), then the set of cloped C X which belong toZ forms a ultrafilter on
the boolean algebra of clopen subsets{gfand thus defines a point pfX, which is precisely the image gfby the
canonical mapX — pX.

Now this construction is classicalX is the Stone space of the boolean algebra of clopen subsEtsTie space
pX is compact Hausdorff zero-dimensional (has a basis consisting of clopen sets), as we have seen; in fact, the map
X — pX is the universal map fronX to a compact Hausdorff zero-dimensional space (in particutat, = p.X).

Note that applying functorially to X — X — pX we see thapsX is canonically isomorphic tpX. In
particular, it means that jf.X is zero-dimensional, then it is equal A& .

Among other things, we have seen that any compact Hausdorff zero-dimensionaksigataturally ak-scheme
for any fieldk, namely the spectrum of the ririg€ of locally constant-valued functions onX. Appropriately, this
scheme is zero-dimensional (this is the translation of the fact that any prime ideflisimaximal).

Note that if we considered instead the ritigf! of locally constant-valued functions ok with finite image(for
X an arbitrary topological space), then we would also have the identificafior= Spec(klX!) = Spm(k[X]), but
the residue field oBpec(k[X]) atp € pX is k whereas that d8pec (k) is (in general) larger. (Not always, though: if
X = w; with the order topology, thepw, = fw; = w; + 1 = wy U {w1 }, and every locally constant function an
has finite image, sé“* coincides witht“] and in particular the residue field at the point “at infinity; § is simply
k.)

2001-12-15:008
Let k be a field. Calk((t)) the field of Laurent series in the variabilevith coefficients ink: in other wordsk ((¢))
is the quotient field of the ring[t] of formal power series in the variabtewith coefficients ink. We can then, of
course, considék((u))(v)): since this is a field containing]u][v]= k[u, v], it also contains its quotient field which
we denote by:((u, v)).
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Now, an element of ((u))((v)) is a formal sumd_ a;;u’v?, with i andj ranging ovetZ, satisfying: (1) there exists
Jjo € Z such thaw;; = 0if j < jo (for all 4), and (2) for allj € Z, there exists, € Z such that;; = 0if i < 4y. In
other words, the set of paifs, j) € Z? such that;; # 0 is bounded at the bottom, and at the left on every horizontal
line.

Given f € k[u,v], we can writef = vou’o (1 + vu”*h)g, whereg € [u,v] is aunit (that is, its coefficient in
u®v? is non-zero)jo, jo, k € Z andh € [u,v]. Now (1 + vuFh)™t = 1 — vuFh + v2u?*h2 + - - - in k((w))(v)): this
has the property that there is a line with negative slope such that all non-zero coefficients are above that line; so the
same thing holds fof ~1. Consequently, this property is true of any element (6, v)) when seen ik ((u))(v)).

Conversely, iff € k((w))(v)) is such that there is a line with negative slope such that all coefficients below that
line are zero, is it true thaf € k((u,v))? Or else, how can we characterize elements(@f, v)) when written in
k((u)(v)? It seems, for example, that, > cyu=Fo¥, is in (u,v)) iff 3" cxt* is in k(t). And what about the field
of seriesf € k((u))((v)) such that there is a line with negative slope such that all coefficients below that line are zero?
Does it have any nice properties (or a geometric description)? More generally, it seems we can consider the field of
formal sumsy " a;;u’v?, with < andj ranging ovetZ, wherea;; are all zero outside of some translate of a fixed (closed)
angular sector of angle 7 and not containing the negative part of either coordinate axis.

2001-12-17:009

Consider a lattice\ of equilateral triangles in the plane; pick some vertex and numbé¥;ithen number the
six vertices surrounding itl”, “ 5", “ 4", “6”, “ 2" and “3", in this order; and complete the numbering of all remaining
vertices by imposing that three vertices that follow consecutively on any line are numbered in arithmetic progression
in Z/7Z. This has some exceptionally nice properties, among which the followingAj.&ke the lattice of points
numbered): this is also a lattice of equilateral triangles, with edge lengthtimes that ofA. Then on the flat
torusC/Ay, the seven points corresponding to the points numbeigd 17, “ 2", “ 3", “4”, “5” and “6”, are pairwise
equidistant. And these can be written as the centers of seven regular hexagons, each adjacent and identical to the six
other ones, which cover the torus. If we lift these hexagons to the plane, we obtain a partition of the plane in seven
regions, with the property that no two points at a distance bet@eamd+/7a (with a being the edge length o) of
one another can belong to the same region. (Recall that if we wish to partition the plamegions so that no two
points at distancé from one another belong to the same region, then we heed4; and thos shows that it can be
done fork = 7. As far as | know, the question of whether= 4, k = 5 andk = 6 are possible is still open.)

2001-12-17:010

Let X be a proper noetherian scheme. The sum of two ample Cartier divisoXsisragain ample: indeed, if
D and D’ are ample, and# is a coherent sheaf olf, there is somen, such that forn > mg the sheaf# (mD) is
generated by its global sections afi¢m D’) similarly, and thenZ (m(D + D’)) = .#(mD) ® ¢(mD’) is generated
by its global sections. The sum of two very ample Cartier divisorsKois again very ample: this follows from the
Segre embedding.

Question: what about the sum of an ample and a very ample Cartier divisor? Can it fail to be very ample (for a
well-behavedX)?

2001-12-18:011

Let PA stand for a recursively axiomatizable first-order theory for doing arithmetic which embeds all primitive
recursive functions (e.g. Peano’s axioms). Then we can write in the langu®getbe assertiods stating that & is
not a theorem oPA”: this is because (a) Godel's scheme allows one arithmetize deduction and speak about provability
in PA (this uses the fact th&A is recursively axiomatizable, and embeds all primitive recursive functions), and (b) the
fact thatG speaks abou® is not a problem, thank’s to Quine’s usual trick. Now assi@uasis(PA) (i.e. the statement
“ 1 is notatheorem dPA”, arithmetized by Godel’'s scheme and written in the languad®\f then, ifG is a theorem
of PA, then ‘G is a theorem oPA” is a theorem ofPA (proofs can be upgraded to a proof of their existence) (5o “
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is not a theorem oPA” is not a theorem oPA (since we have assumétbnsis(PA)), which is exactly to say tha#
is not a theorem aPA; this shows thatz cannot be a theorem &fA. SoConsis(PA) implies thatG is not a theorem
of PA, in other words( itself: we haveConsis(PA) = G. And sinceG is not a theorem oPA providedPA is
consistent (we have proved this), the same holdSaisis(PA). This is Gddel's incompleteness theorem.

Now in an ambient metamathematics (governed by, ZByj.e. Zermelo-Fraenkel set theory), we have a model,
viz. N, of PA (actually, | skip a little here: in the preceding paragraph | did not rededrdéo bew-consistent, merely
to be “some” well-behaved formal system for doing arithmetic; here, | really have the true Peano’s axioms in mind).
Now Consis(PA) is truein N (andZF proves it): indeed, if we assumeConsis(PA), then there is a proof of in
PA, and since the axioms &fA are true inN, then_L is true, and it is not. The key here is that in the language of
ZF we can form a statemeft(n) which states that “the proposition labeledn the chosen coding of arithmetic, is
true (inN)”; so ZF can speak about arithmetic truth, wher@ascan only speak about provability: it can encode the
statementP(n) which states that “the proposition labeledn the chosen coding of arithmetic, is a theorenPaf’
(e.g.Consis(PA) is =P(“ L")); and we havévn)(P(n) = T'(n)) (this is a theorem ofF), and since evidently we
have-T'(“ L"), we also have-P(“ L"), i.e. Consis(PA).

SoCounsis(PA) is true (inN, this being a theorem &F); but then the same reasoning shows thatisis(P A A
Consis(PA)) is true; and then that the theory obtained by addirag axiom toPA is still consistent; “and so on”.
The question is, where, exactly, to we stop?

If we let PA® = PA, andPA®*! = PA® A Consis(PA®), andPA°® = No<s PA if 6 is limit, the question is,
when does this stop making sense? At the smallest ordinal sucRAlais no longer recursively axiomatizable: this
is probably something like the smallest ordinasuch that there is no (primitive?) recursive well-ordef™Nof order
type«. Now what about the greatest system in question, c&IAt°: it is no longer recursively axiomatizable—does
Godel's theorem still apply? What are its theorems (e.qg. is every true stateni¢iat heorem ofPA>°, or am | just
being utterly naive)?

2001-12-21:012

Each (infinite) countable ordinal can be represented as a certain well-ordeNoithus as a certain subset of
N x N (trivially not unique). Now given any countable family of subsetNok N we can consider the smallest
countable ordinalv which hasno representation as one of these subsets. For example, taking the recursive subsets of
N x N, we consider the smallest countable ordinal which cannot be represented by some computable well-ordering on
N. Similarly, we can consider the smallest countable ordinal which cannot be represented by some well-ordéring on
given by a primitive recursive function (resp. a function calculable in polynomial time by a Turing machine, resp...).
How can we provestrict inequalities between these ordinals?

2001-12-21:013

(“The Very Basic General Tao of the Universal Ring.”)

Let k& be any ring and le?Z? = Spec k[t] be the forgetful functor fronk-algebras to sets. By flat descent, this
is a sheaf on the category of affikeschemes, for any “reasonable” topology. Moreover, it is an internal ring in the
topos of sheaves of sets (for the “reasonable” topology in question), becaus# e&ghan trivially be endowed with
a ring structure (in a natural fashion), by “unforgetting” what was forgotten. To say that a seatfo#? (in other
words, an element of somek-algebrad = Z(A), whereSpec A is the affine scheme on which the section is taken)
is “not equal to zero”, i.e~(x = 0) for the Kripke-Joyal sheaf semantics, means that for any morpHism B
of k-algebras (i.e. for anyl-algebraB), if the image ofz in B is 0 then B is covered by the empty family (this
translatesl), and the latter happens exactly whBn= 0 because we have assumed a “reasonable” topology. In other
words,{x € Z : =(xz = 0)} is the functorZ* which takes &-algebraA to the setZ*(A) = A* of its invertible
elements (indeed, to say that every morphiém> B sendst to some non-zero element whéh#£ 0 means that: is
invertible); and this functor is a sheaf for any “reasonable” topology. Now this is{falso.Z : (Jy € Z)(zy = 1)},
the “set of invertible elements og”, for pretty much obvious reasons. So we hdve € Z)((—(z = 0)) —
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((Fy € Z)(xy = 1))) for the Kripke-Joyal semantics. It is in this sense thats actually a “field”. (Note, by the
way, that we have:(0 = 1) in %, which means that &-algebra in whictd = 1 is covered by the empty family.)

Furthermore, the shedf: € % : -——(x = 0) } is easily seen to be the sheaf which takésagebraA to its set of
nilpotent elements (indeed, to say that every morphism B sendsr to some non-invertible element whéh+# 0
means that is nilpotent). It is an ideal ofZ (in intuitionistic set theory, ifZ is any ring, the{z € & : =—(z = 0)}
is an ideal of«?). In fact, it is exactly the ideafx € #Z : (In € N)(z™ = 0)} of nilpotent “elements” ofZ: one
direction is clear in view of the description we have given and the other follows begaisa “field” as seen above.
So we haveVe € Z)((——(x = 0)) <= ((In € N)(z™ = 0))).

In algebraic geometry, the additive group#fis written G,, and the multiplicative grougz> is written G,,,.
Both are (representable by) affikeschemes, respectivel, = Speck[t] andG,, = Speck[t,t~1]. However,
{z € # : ——(x = 0)} is not representable byfascheme (as soon &sis not the zero ring). We now prove this fact
(I am indebted to Joél Bellaiche for showing me how to do it).

First, we can assume thiatis an algebraically closed field. Indeed, ket> Q) be the algebraic closure
of the quotient oft by some maximal ideal. Suppose the functor= {z € Z : =——(z = 0)} taking
a k-algebra to its set of nilpotents, is reprensentable liysehemel’; then the functor of points of the
2-scheméel” xgpec 1 Spec €2 is the functor taking af-algebraA to its set of nilpotents (which is the same
as anf)-algebra or as &-algebra). So if we have the statement@iit also holds fork.

So considelk an algebraically closed field and suppose the fungtdaking ak-algebra to its set of
nilpotents, is representable bykescheméd/. Now ¥ (k) has a single element, correspondingte %, so
V has a single closed point; moreoverfifis any extension field of (i.e. any function field ovek), then
¥ (K) still has a single element, which comes fronik), so thatl” has no other point than the closed point
(here, a “point” means a point of the underlying topological space ofthechemd/).

But this shows thaV is affine, because there must exist some affine subscheme containing the unique
point of VV, and this must then be all &f. LetV = Spec A, whereA is ak-algebra.

SinceV has a single point, it is irreducible, so its reduced scheftié is integral, and it iSpec(A/N)
whereN is the nilradical ofA (i.e. the ideal of nilpotent elements Af). ButthenA /N is an integral domain
with a unigue prime ideal0), which is therefore also maximal, so thayN is a field, and this field i&
(since the closed point corresponding @ was already defined ové).

By now we know that every element df not belonging td: must be nilpotent.

The natural transformation” — % (injecting canonically the set of nilpotent elements éf-algebra
A in the set ofall elements ofA) corresponds to a morphism of schemé&s— Spec k[t], or again to a
morphism ofk-algebrag:[t] — A, or yet again to an elemefite A. And § does not come from because
V' — Specklt] is not constant. Thereforgis nilpotent, sayy™ = 0. But this means thaany nilpotent
elementz of any k-algebraA satisfiess™ = 0, and this is certainly impossible.

This is the desired contradiction.

Even though? = {z € # : ——(z = 0)} somehow “looks like” the (formal) schenfpec k[t] (recall that
k[t] is the projective limit of thek[t]/(¢™) with n ranging ovelN), yet is not equal. There is a ma — Spec k[t]
(because ift € A is nilpotent, we can form a morphisk{t]— A which sendg to x), which is a monomorphism
in the category (topos) of sheaves, but it is not surjective (a morphfsfr~ A can exist without the image df
being nilpotent, witness the identity morphism/gft]). It is also true that morphisnis’ — % are precisely given by
elements of[t]. Morality: the category of schemes does not have nice inductive limits (even filtered inductive limits
when all arrows are monomorphisms are not nice).

2001-12-21:014
(This more or less continu&901-12-21:013
Let k£ be any ring and letZ be the “universal ring”, i.e. the forgetful functor frolalgebras to sets, endowed
with its internal ring structure in the topos of sheaves of sets on the category ofiaffailemes for some “reasonable”
topology. And let4” = {z € # : =—(x = 0)} (written ¥" in 2001-12-21:01Bbe the ideal of nilpotent elements of
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Z, the sheaf taking &-algebraA to the set of its nilpotent elements. We want to try to understghe: Z /.4, the
reduced ring of%.

A section of%’ on Spec A (with A a k-algebra) is a (descent) datum as follows: AalgebraB which covers
A for the given (“reasonable”) topology (e.B. a finitely presented faithfully flati-algebra), and an elemente B
such that the element® 1 — 1 ® © € B ® 4 B is nilpotent; furthermore, we declare two such dga, z;) and
(B2, z2) to be equivalent when the element® 1 — 1 ® a2 € By ® 4 By is nilpotent. And ifA — A’ is a morphism
of k-algebras, it takes a datuf/3, «) on A to the datum B ®4 A’,z ® 1) on A'.

Fact: ifQ is an algebraically closed field (ov&}, thenZ' () = Z(Q). Indeed, letB be a non-zeré)-algebra
(necessarily faithfully flat), and € B be suchthat ® 1 — 1 ® x € B ®q B is nilpotent. LetB’ be the2-subalgebra
of B generated by, in other words thé)-vector subspace db generated by the powers of evidently, B’ ®q B’ is
anQ-vector subspace d8 ®q B. If B’ is infinite dimensional, then it is isomorphic to the rifiiz] of polynomials
in one variable with coefficients ift, andz ® 1 — 1 ® x cannot be nilpotent. Otherwise, letact (faithfully) on the
finite-dimensionaf2-vector space3’ by multiplication, and lef; be its eigenvalues, witnessed by the eigenveatgrs
sayzrv; = \v;, With \; € Q. Ifthere exist andj such that\; # A;, then(z®1—-1®z)(v;@v;) = (A — ;) (v; ®v;)
in B’ ®q B’, so thatr ® 1 — 1 ® 2 cannot be nilpotent. Therefore al] are equal to the same, saybut thenz — A is
nilpotent, and this shows that the class of the daflinz) in Z’(Q)) is the same as the class(6t, \). On the other
hand, the class df2, \) and the class of(2, \') are evidently different, and we have indeed sha#/) = % ().

The same statemeat’ (K) = Z(K) therefore also holds for any field (not necessarily algebraically closed)
overk, simply by embedding it in its algebraic closurélpdate: this isfalse cf. 2002-04-06:04)

Now if A is an integrally closed domain (ovk), we again wish to show tha#’(A) = Z(A). Let K be the field
of fractions of A, and B a faithfully flat A-algebra. Sincel — K, it follows thatB ~— Bg (WhereBx = B ®4 K)
by flatness. Now ifc € Bissuchthat ® 1 — 1 ® x € B ® 4 B is nilpotent, then it is also nilpotent iBx ®x B,
sox — A is nilpotent inBx for some (unique) € K as seen above. How do we conclude from there? It shouldn't be
too hard, but | seem completely stuck.

2001-12-21:015

Let us try to contract the axis = 0 in the affine plane. More precisely: |1&f = Spec k[z, y] (over a fieldk),
let A} = Speck[z] and letA be thek-subalgebra of[z,y] generated by they® for i € N. So A is thek-algebra
of polynomials which have no term igi for i > 0, or, in other words, which are constant along the axis 0. The
projection morphism? — A} (determined by the inclusiokz] — k[z, y]) factors througtBpec A in the obvious
way. Note thatd is a (faithfully) flatk[x]-algebra, because it is free a&[a]-module (with basid, 2y, zy?, zy3, .. .).
The fiber ofSpec A over a closed point o}, other than the origin is isomorphic &pec k[y], whereas the fiber over
the origin isSpec k.

Is the ring A noetherian?Ypdate: the answer isi0, see2001-12-23:013 Is it catenary? I&[z, y] flat over A?
Numerous questions of this kind can be asked...

Similar techniques can be used to perform many other kinds of contractions (e.g. two points in the plane to one:
this was used by Luc lllusie to provide me with an example of a non-placid scheme).

2001-12-22:016
Some facts about modules over commutative rings:
A module over a local ring is projective iff it is free (“Kaplansky’s theorem”: cf. MatsumG@@nmutative Ring
Theory theorem 2.5).
A module of finite type over a local ring is flat iff it is free (cf. Matsumuop, cit, theorem 7.10).
A module of finite presentatioM over a ringA is projective iff its localizationM,, is free overA,, for every
maximal ideaim of A (cf. Matsumurapp. cit, theorem 7.12).
A moduleM over aringA is flat iff its localization)M,, is flat overA,, for every maximal ideah of A (cf. EGA,
0.6.3.3).
A module of finite presentation is flat iff it is projective (this follows from the above).
7



A module is flat iff it is a filtered inductive limit of free modules (“Govorov-Lazard theorem”: cf. Eisenbud,
Commutative Algebra with a View Toward Algebraic Geomehgorem A.6.6).

A module over a principal ideal domain is flat iff it is torsion free (cf. Eisenlmyd cit. corollary 6.3).

e A submodule of a free module over a principal ideal domain is free (cf. Hilton & StammiBaé€urse in
Homological Algebratheorem 5.1). In particular, every projective module over a principal ideal domain is free.
A module of finite type over a noetherian integral domain is torsion free iff it is a submodule of a free module of
finite type (Joél Bellaiche and Gaétan Chenevier, personal communication).

Question: can we find analogues of these statements over non necessarily commutative rings?

2001-12-23:017

(This answers a question 2001-12-21:015

The ring A of polynomialsf € k[z, 3] having zero coefficient i’ for all i > 0, introduced ir2001-12-21:015
is not noetherian. Indeed, &t be the ideal ofA generated by they® with 0 < i < n: thus,I,, consists of thef € A
having no coefficient iy’ for i > n. TheI, form a strictly ascending chain of ideals.4f and their union’, is the
ideal consisting of th¢ € A whose constant coefficient (the value on the axis 0) is zero: it is a maximal ideal.

The quotientd /I, is isomorphic tdk. On the other hand, the quotiemgI,, are all isomorphic to the extension
of k by a countable infinity of infinitesimals, the product of any two of which (including two the same) is zero.

2001-12-23:018

Let £ be any ring (this means “commutative”, of course). We say thatadgebraA is connectedvhen there
are exactly two idempotents, namélyand 1 (note that this impliesA # 0, because the zero-ring has exactly one
idempotent which is both and1). Since idempotents ol are the same ds-algebra homomorphisnig — A, this
is again the same as saying thatm,, (%, A) has exactly two elements.

Unfortunately, the tensor product of two connectedlgebras need not be connected, even whisra field. For
exampleC is a connected étalR-algebra, but its tensor product with itself@sgr C = C? and it is not connected.
However, over an algebraically closed figlj the tensor product of two connected algebras is again connected.
(...continued a2001-12-30:021.)

See als@2001-12-30:022

2001-12-26:019

If k£ is a field, andA a k-algebra (this means “commutative”, of course) of finite type, theis a Jacobson
ring, in other words every prime ideal is an intersection of maximal ideals: this is the “advanced formulation” of
the Nullstellensatz. (More generally, this holds for an algebra of finite type over a Jacobson ring.) In particular,
the Jacobson radical (the intersection of the maximal ideals) obincides with the set of nilpotent elements (the
intersection of the prime ideals) af. Moreover, the residue fields af (modulo some maximal ideal) are finite field
extensions of (more generally, of the corresponding residue field of the base ring, for a Jacobson base ring).

Now let{2 be an algebraically closed field, addan2-algebra. Ifx € A, to see whethet is nilpotent (resp. idem-
potent) inA, it suffices to see whether itis in the algeb¥ac] C A generated by: over(2, or in any othef)-subalgebra
Ay of A of finite type. In particular (by the above), it means thas nilpotent iff it belongs to all the maximal ideals
of Ay, and the quotient field of any such idealSds Therefore,x is nilpotent iff everyQ2-algebra homomorphism
n: Ag — € takeszx to 0. This can be used to show that the tensor product of two redQealgiebras is reduced.
Indeed, letd and A’ be two reduced-algebras, anad € A ®q A’ nilpotent: we can find twé)-subalgebras!, of A
and Aj, of A’ of finite type such that belongs to the subalgebrk ®q A} of A ®q A’ (e.g. writex as a finite linear
combination of tensor product of elementsAfind of A’ and take the)-subalgebras generated by these elements).
(...continued a2001-12-30:020.)



2001-12-30:020

(This continue001-12-26:019

We wish to show that if2 is an algebraically closed field, then the tensor product of two redQleaidebras is
again reduced. So let and A’ be two reduced?-algebras, and € A ®q A’ be nilpotent. Writex = . a; ® aj,
with a; € A anda), € A’; furthermore, we can assume that tfjeare linearly independent (ové&)). Call A, the Q-
subalgebra ofi (finitely!) generated by the,. Now for every maximal ideah of Ay, the class of in (4y/m) ®q A’
(which is canonically isomorphic td’ sinceA,/m = ) canonically becausd, is an algebra of finite type over the
algebraically closed fiel) is nilpotent, so it i) since A’ is reduced; and, since th¢ are linearly independent, the
a; are all inm, so they are in every maximal ideal df), hence in every prime ideal{( is a Jacobson ring), so they
are all zero 4, is reduced). Sa = 0, QED.

This proof is extremely unsatisfactory because of the use of the linear independence:ofiiéch simply
doesn’t seem to belong there. Geometrically, we consigerart2-valued function orspm( Ay ®q Aj) = Spm A x
Spm Ay, which is zero everywhere, so it is zero on every line (corresponding to a maximahidegal)), but exactly
how we go from there ta being zero is obscure at best.

2001-12-30:021

(This continuef001-12-30:02@&nd 2001-12-23:019

We wish to show that if2 is an algebraically closed field, then the tensor product of two connéetddebras is
again connected. So letand A’ be two reduced-algebras, and € A ®q A’ be idempotent. Write = >, a; ® a,
with a; € A anda) € A’. Call Ay the Q-subalgebra ofd (finitely!) generated by the; and A{, that generated by
thea!. Now if e is not1, there exists a maximal ideal, df, ®q Aj, which we can writedom’ + mAj for maximal
idealsm of 4y andm’ of Af, to which it belongs. The class efin (4;/m) ®q A (which is canonically isomorphic
to Aj sinceAp/m = Q canonically becausd, is an algebra of finite type over the algebraically closed fi&)ds
idempotent, so it i® or 1 since A}, is connected, and since it belongsntq it is not 1, so we have in fact € mAj,.
Then the class of in Ay ®q (A4f/m”) = Ay, for any maximal ideain” of Ay, is an idempotent ofly, hence0 or 1,
and it cannot bé because it is im. Soe belongs to every maximal ideal ofy ®q Aj, so it is nilpotent, so it i¥),
QED.

This proof absolutely sucks! Geometrically, we say first that an Aing connected ifSpm A is connected: the
“only if” part is evident, and for the “if” part, notice that  andV are disjoint open sets which covepm A, then
there exist elementg; andpy, of A which vanish exactly o/ andV respectively, and thepy + py is invertible
(because it belongs to no maximal ideal) whengas,, = 0, and then(py +pyv ) ~py is idempotent. Furthermore, we
haveSpm (A4, ®q Aj) = Spm Ay x Spm Aj, (as sets!), and as far as the topology is concerned, we use the following
easy topological lemma. Lemma: I& andY be two connected topological spaces, and consider some topology on
X x Y (not necessarily the product topology) such that the restriction to dwgry Y is canonically homeomorphic
to Y and the restriction to everY x {y} is canonically homeomorphic t&; thenX x Y is connected. Evidently,
the Zariski topology orspm (4 ®q Afj) = Spm Ay x Spm A, has this property. Still, the whole process, whether
presented algebraically (as above) or geometrically (as we have just done) is horrendous.

2001-12-30:022
(This resume2001-12-23:018
As we have seen, a (commutativeplgebra4 is connected iffiomy, (k2, A) has exactly two elements (notice
that we don’t consider the zero algebra to be connected). A more satisfactory notion is that of a relatively connected
algebra: namely when the madpom;,(k2, k) — Homy(k?, A), induced by the canonical morphisin — A, is
bijective (here the idea is thatthas precisely as many “connected parts” (a deliberately vague ted)a<ourse, if
k is connected, this is just the same as sayingthiatconnected. And then we create a relative notiork-atgebraA
is universally relatively connected iff for evekyalgebraB the B-algebraA ®, B is relatively connected (“relatively”
as aB-algebra!). Evidently, a universally relatively connectedlgebra is relatively connected; a counter-example
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is readily found: takeC[z] as aCly]-algebra withy = 22 (the parabola), which is (relatively) connected, but not
universally relatively connected as can be seen by tensoring l@¥[thelgebraC given by, sayy — 1.

We should, of course, mention that the $ktm; (k?, A) of idempotents of &-algebraA can be ordered by
lettinge < €’ iff ee/ = e. This makes it into a lattice with least eleménigreatest elemerit, greatest lower bound
given byinf(e, e’) = ee’, and least upper bound byip(e, ') = e + ¢’ — ee’; better even: it is a boolean algebra with
“negation”e — 1 — e. This can also be identified with the boolean algebra of clopen subsgteofd (compare with
2001-12-15:007see als®002-03-18:038

If Ais a noetherian algebra, e.g. an algebra of finite type over affiglien the boolean algebFom;, (k2, A)
of idempotents ofA is finite. This follows (for example) from the following lemma on boolean algebras: a boolean
algebra in which every (strictly) decreasing (or, equivalently, increasing) sequence of elements is finite, is finite.

Let us prove the fact. Assume on the contrary that we have an infinite boolean algebnahich

every decreasing sequence of elements is finite (an infinite well-founded boolean algebra, that is). Recall

that an element > L is called anatomiff there is nov such that, > v > L. Certainly B, being well-

founded, has atoms: for example, start with= T; now either this is an atom or there existg;asuch that

ug > u1; > L; so eitheru; is an atom or there existswg, such thatug > u; > us > 1; and so on, and

the process must stop with an atom since otherwisedhewould form an infinite decreasing sequence,

contrary to the hypothesis thatis well-founded.

Now, if u = ug is an atom, every elemeantis either disjoint fromw (in the sense thai Mv = 1),

or it is greater or equal ta (which is equivalent ta, M v = w); this is because M v < wu, SO it can

be only L or u. And the boolean algebrB, = B is the product of the two-element algelfra, T} by

the subalgebra3; consisting of elements disjoint from (the term “subalgebra” is actually an abuse of

language sincé is not the same iB; as in B, but the meaning is clear anyway). Nd¥ verifies the

same hypotheses @& So we get an infinite sequenag, u1, . . . of pairwise disjoint atoms. And then the

sequencery < ug U uy < ugUuy Uus < ---, forms an infinite increasing sequence of elementB odind

we deduce an infinite decreasing sequence, QED.

A noetheriark-algebraA is a direct product of finitely many connectgealgebras (note that the zero algebra is
the empty product).

If Q is an algebraically closed field, then any (relatively) conne€tealgebra is, in fact, universally relatively
connected. Indeed, we have to show thaBifs an{2-algebra and4 a connected?2-algebra, then the idempotents
of A ®q B are exactly those oB3; now by standard arguments (see, e2§01-12-26:019 we can assume that
and B are noetherian, and furthermore tliais connected, and we have then to show that the tensor product of two
connected?2-algebras is again connected, which was dor0idl-12-30:021

If A is a universally relatively connected algebra over some kinthen for every morphisnk — Q to an
algebraically closed fiel€, we haveA ®y 2 (relatively) connected. This follows immediately from the definition.
We say that the algebrd hasconnected geometric fibers

The converse seems to be trueAifs ak-algebra with connected geometric fibers, theis universally relatively
connected. But | don’t have the patience to write it in full just now.

2002-01-03:023

If A is a noetherian, reduced, (commutative) ring &gl is its total ring of fractions (i.e. the localization df
inverting the multiplicative sef' of non-zerodivisors), the Olivier Wittenberg points out to me tRat is an artinian
ring (precisely, a finite product of fields).

If Ais notreduced, this is no longer necessarily true. The simplest example seeni¥td bé/ (zy, y?): every
non zerodivisor of is already invertible, bufl is not artinian. However, this example is not really fascinating.

If A is not noetherian, even the conclusion tl#&f is zero dimensional (recall that “artinian” is equivalent
to “noetherian and zero-dimensional”) is not necessarily true. Indeed, consider Clz1, ..., z,]/((zix;)i;),
i.e. the ring of formal series im variables the product of any two (different) of which is zero, andAdbe the
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inductive limit of the A,, with the obvious (injective) arrows. Then every non-zerodivisoAa$ already invertible,
but A is not zero-dimensional.

This leaves us to challenge the idea of the total ring of fractions as an interesting construction. Still, it would
be nice, given an arbitrary rind, to find a zero-dimensional rinff 4 and a morphismd — K 4 that satisfies some
universal property among such. Th8gec K 4 — Spec A would form some kind of “zero-dimensional skeleton” (of
generic points).

In the first case given above, = C[z][y]/(xy, y?), we should havél 4 = C((z))xCly]/(y?): note in particular
that the prime ideals oK 4, viz. ((1,0)) and((0,y)), do not correspond to the minimal prime idealsAdfthere is
only one such, namelfy))—here, we have something like an embedded component. In the second casé théth
inductive limit of the A,, defined aboveK 4 should be the subset of the direct prod{iff”, C((z;)) of countably
many copies ofC((x)) consisting of familieq f1, fo, .. .) such that for some, and some: € C we havef; = ¢ for
1 > 1ig. (Perhaps it would be more reasonable to considgras a pseudo-ring, i.e. not require the existence of a
multiplicative unit, in which case we can just let= 0.)

How can we computé& 4 in general, and how can we check that the above assertions are correct?

2002-01-07:024

Is the following assertion true (it would be pleasant): a (commutative)4iigreduced and zero-dimensional iff
every element is the product of an idempotent by an invertible element? And can we find some analogous statement
for possibly non-reduced rings?

If A has the property that every element is the product of an idempotent by a unit, then this also holds for every
quotient ofA, and in particular for the quotient of by a prime ideal. But the quotient by a prime ideal is an integral
domain, so its only idempotents af@nd1, so every element is eithéror invertible, so the quotient is a field, so the
prime ideal is maximal. So every prime ideal is maximal, &nid indeed zero-dimensional. And it is easy to see that
it is reduced: ifu is a unit ance is an idempotent, then for > 1 we have(ue)™ = u"e and this can be zero only
if e itself is zero. Therefore the “if” direction above is corredtipflate: the “only if” direction is also correct, see
2002-03-18:039

2002-01-08:025

(This comes from an attempt to setfl802-01-07:029

Let A be areduced(commutative) ring: this means that the intersecmsp%A p of all prime ideals ofA is
(0). If I'is an ideal of4, the intersectiofi);,cs,.. 4 P Of all prime ideals ofA containing! is the radical/I of I,
which is I exactly whenA/I is reduced (this does not requirereduced). Now is it true (fod reduced) that, for
any ideall of A, the intersectiod, = ﬂpespecA(p + I) of the sum ofl with every prime ideal of4, is exactly/?
Evidently I, containsl and is contained in the radicg/I of I. The statement is clear whdris radical (i.e.A/I is
reduced), or in the case whe#eis an integral domain or more generally wheontains a prime ideal. But does it
always hold? pdate: the answer ii0, see2002-01-09:026

This would imply thatA /T injects in[ T, cgpec 4(A/(p + 1)), and, in particular, if all thel/(p + I) are reduced
(e.g. if A is zero-dimensional), so id/I.

2002-01-09:026

(This answer2002-01-08:025

The answer to the question aske®®02-01-08:025s “no” (thanks to Hugues Randriambololona for providing
me with a counter-example): takethe ringClz, y]/(xy) andl = (z — y) the ideal of the trace of the diagonal; then
the two minimal primes ofA are(x) and(y), so the intersectiof, of thep + I is /I = (x,y) which is not/. And
A/Iis not reduced, whereas all th/ (p + I) are. Ugh. This was utterly naive.
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2002-01-11:027

Let A = C*(N, R) be the ring of bounded sequences of real numbers: this can be also seen astHghNnB)
of continuous real-valued functions on the St&ech compactificatioN of the set of integers. If € SN is a point
of said compactification, an@ the ultrafilter onN to which it corresponds, there are two particularly important ideals
of A which we can associate to

e TheidealM, of all f € C(5N, R) which vanish ap; in other words M,, consists of those bounded sequences
of real numbers which, when extended in the unique possible way to a continuous real-valued fungién on
vanish ap. This is equivalent to saying that for every> 0 there existd” € % such thaif(n)| < eforn € V.

e The idealO, of all f € C(BN, R) which vanish in the neighborhood pf in other wordsO,, consists of those
bounded sequences of real numbers which, when extended in the unique possible way to a continuous real-valued
function ongN, vanish in some neighborhood pf This is equivalent to saying that there existsc % such
that|f(n)| =0forn e V.

Facts: theM,, are exactly the maximal ideals of; the O, are prime ideal (which are not maximal except
whenp € N, i.e. when the ultrafilterz to which it corresponds is principal); every prime idgabf A satisfies
0O, Cp C M, for auniquep € AN (and in particular, every prime ideal dfis contained in a uniqgue maximal ideal,
and theO,, are the minimal prime ideals of). Among these facts, the only non-obvious statement is that every prime
ideal is contained betwedd,, andM,, for a uniquep € SN. To prove this, lep be a prime ideal ol andM, a prime
ideal containing (we do not yet assert thatl, is unique). For every € O, we can findg ¢ M,, such thatfg = 0
(e.g. letg = 1, wheref cancels o’ € %); theng ¢ p so we must havg € p. This shows thaO,, C p, and it is
then easy to see thMl, is the uniqgue maximal ideal of containingp.

Let I be the principal ideal ofi generated by the sequer{eie). In other words/ consists of those sequencgés
such thaty(n) = nf(n) is bounded. (Note: we simply forget abdut N; this is unimportant.) Lep € SN\ N and
% the corresponding non principal ultrafilter: th¢gne O, + I iff g(n) = nf(n) is bounded on a certaii € % .
Soif f € Npepmn(Op + 1) theng(n) = nf(n) is bounded on one some element of each ultrafileon N. But
theng is bounded oN: otherwise, find an infinite subs8tC N such thayy(n) — +o0o on S (the casg(n) — —oco
is handled similarly) and consider a non principal ultrafilter concentrated-etthis gives a contradiction. Thus
I= ﬂpeﬁN\N(Op + I); and in particular] = ﬂpespecA(p + I). Thus in this case (rather surprisingly), the answer
to the question asked B002-01-08:025s “yes”.

Note that/ is notequal tof ), c,m 4 (M + 1) = (), sn(M, + 1): indeed, sincd C M, for everyp € SN\ N
andM,, + I = Aforp € N, the intersection in questionf§,. 5, y M, Which is the set of sequences tending tat
infinity. In particular,A is certainly not of dimensiof (anyway, we already know thél, is prime but not maximal), a
somewhat surprising fact sing& is a zero-dimensional topological space—and the ringjlakeal-valued sequences
is zero-dimensional (se2001-12-15:00%

Thanks to Yves de Cornulier for this example. For a more general discussion of f@eR), see Gillman &
JerisonRings of Continuous FunctiorfSpringer GTM 43).

2002-01-13:028

If E is atotally ordered set, we say that a pdit V') of subsets of is aDedekind cubf E iff U = {z € E :
Fy ¢ V)x <ylrandV ={y € E: (3x ¢ U)(y > z)}. Evidently this means that whenever< y, we have
yeU=zxecUandx € V= y e V,andconsequently NV = @. The complement off U V' is either empty
or equal to a singletofla }, in which casd/ = {z € E: x < a}andV = {y € E : y > a}. In the latter case, we say
that the Dedekind cut isonvergenbr principal, anda is itslimit (note that it is uniquely determined, by definition).
The setE* of Dedekind cuts of? is totally ordered by lettingU, V') < (U’, V") iff U C U’, or, equivalentlyy”’ C V;
and E¥ naturally embeds iZ* by sending each to the principal cut with limitz. We say that a totally ordered sBt
is Dedekind-completi#f every subset of” has a least upper bound: this is equivalent to every subset having a greatest
lower bound, or taF’ being compact for the order topology, or to every Dedekind cut being principal. The" st
Dedekind cuts of¢ as previously defined is Dedekind-complete for evErnand we call it theDedekind completion
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of E. Itis, in a sense which we shall not bother to make precise, the smallest Dedekind-complete totally ordered set
containingk.

Now supposé? is a totally ordered abelian group: this means thdtas a structure as a totally ordered set and
a structure as an abelian group and that the two are compatible in the sense that every translation is order-preserving.
Then E* doesnot have a totally ordered abelian group structure except if it is trivial — this is because it has a least
element (as the least upper bound of the empty set) and no non trivial totally ordered abelian group has a least element.
On the other hand, we can defin®adekind-Cauchy cuf E as a Dedekind cutl/, V') with the additional property
that for everye > 0 of E there exists an € U and any ¢ U with y — x = ¢ (or, equivalently, there exisise V and
x ¢ V with y — x = €). For example, each principal Dedekind cut is a Dedekind-Cauchy cut. Conversely, if every
Dedekind-Cauchy cut is principal, we say tltais Dedekind-Cauchy-complefer simply completg. In general, the
setE™ of Dedekind-Cauchy cuts df, with the order induced upon it by the S8t of all Dedekind cuts, has a natural
structure as a totally ordered abelian group, extendin@een as the subset of principal cuts), which is Dedekind-
Cauchy-complete. We call it tHeedekind-Cauchy completiaf E. It is again, in a sense which we shall not bother
to make precise, the smallest Dedekind-Cauchy-complete totally ordered abelian group cottaining

For example, the Dedekind-Cauchy completion of the(®elf rational numbers (with the usual order and the
abelian group structure given by addition)Rs(with the usual order and addition). There are only two Dedekind
cuts of@Q which are not Cauchy, name{{, @), which we write astoco, and(2, Q), which we write as-oo; so the
Dedekind completion of) isR = R U {+o0}.

If Eis atotally orderedield (which means that it is a totally ordered abelian group for addition, and the product
of two positive elements is positive), its Dedekind-Cauchy completion is again a totally ordered field. Recall that a
totally ordered fieldZ is real-closediff for every polynomialf € E|[t], wheneverf(xz) < 0 andf(y) > 0 there exists
x < a < y such thatf(a) = 0 (there are various equivalent definitions of this); every totally ordered fetén be
embedded in a unique smallest real-closed field contaibirgalled thereal closureof E. Note that neither of the two
notions of Dedekind-Cauchy completeness and real closedness implies the other (for example, the real €gsure of
i.e. the set of real algebraic numbers, is real-closed but not Dedekind-Cauchy-complete; and on the other hand the field
Q((t) of Laurent series with rational coefficients in the indetermintatetally ordered lexicographically on powers
of t—thus making—! infinitely large with respect t@—is Dedekind-Cauchy-complete but not real-closed). On the
other hand, the Dedekind-Cauchy completion of a real-closed field is again real-closed (at least | think so; perhaps |
should check more carefully).

Now if E is a real-closed field an@/, V) is a Dedekind cut (not necessarily Cauchy) which does not converge
(note that such cuts always exi$¥, @) is an example), we can form a new real-closed figlccontainingE and in
which there exists verifying U < ¢ < V (this means: < t for all z in U andy > ¢ for all y in V; we do not assert
thatt is unique), as follows. First form the fiel(¢) of rational functions with coefficients iff on the indeterminate
t. If f(t) is a non-zero element df(¢), it changes sign a finite number of times, and, becdtise real-closed, at
elements off (either zeroes or poles); therefore there exigt U andy € V such that it has a constant sign on the
interval [z; y]: we let f(t) > 0 or f(¢t) < 0 according as this sign is positive or negative. This defines a total order
on E(t) extending that orE. And we letE’ be the real closure aE(¢) for this total order. Note that ifU, V) was
a Dedekind-Cauchy cuf’ is contained in the Dedekind-Cauchy completion (am&lindeed unigue, as the limit of
(U, V) in the latter).

We can then attempt to repeat the previous operation several times (even transfinitely many times). For example,
let £ be a real-closed field, and defid® = E, and, for each ordinak, if £, has been defined and there exists a
Dedekind cut{U, V') of E such that na of E,, satisfied/ < t < V, then letE,; = (E, )’ for the unique Dedekind
cut of E, extending(U, V'), and ford a limit ordinal let s = | J,,_; £ (Which is really an inductive limit for the
inductively defined natural embeddings). Evidently the process must stop at some point, and then we have obtained a
field E* which has “filled” every cutU, V) of E. Petitio principii: the field 2% does not depend on the choices made.
How do | prove this? Then we call* the Dedekind-Conway completion &. Note that there is no such thing as
a Dedekind-Conway-complete field (thus the term “completion” is inadequate), beEausalwayslarger thank.
Petitio principii secundaiterating the operatio® — E* transfinitely on all ordinals, starting from the field of real
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algebraic numbers, we obtain Conway's field of “Numbers”. This needs to be carefully checked.

Another similar process we can go through is as follows. We say that a totally ordered set (and, in particular,
a real-closed fieldf is ann,-set iff for any two subsetsl, B (possibly empty) offS of cardinal< X, such that
A < B (thatis,z < y forallx € A andy € B) there exists¢ € FE such thatd < ¢ < B. Now start with a
real-closed field~, and leta be any ordinal. IfE is notn,, there exist subsetd, B of E with cardinal< X, such
that A < B but there is n@ € E with A < ¢t < B; and then the subsets = {x € E: (3y € A)(x < y)} and
V ={ye E: (3x € B)(y > z)} form a Dedekind cutU, V') of E, which is not convergent. By the operation
described above, we can construct a larger real-closedAieldhich adds an elementto E satisfyingU < ¢ < V
(and in particulaid < ¢t < B). EitherE’ is ), in which case we have finished, or it is not, in which case we continue,
and we repeat the process transfinitely. Eventually this must come to a stop: at least this is clear if we first fill all
then, gaps inE and then in the extension thus created, and so on. Indeetlet E and for everya let E, 1
be real-closed field containing, and such that for ald end B of cardinal< R, in E, there exists € E,,; with
A <t < Band foré a limit ordinal let &5 = (J, .45 Fa; then, if x has cofinality at least.,, for any A and B of
cardinal< X, in E,, these already belong to somig, for o« < x, and then there existse E,;; C E, such that
A <t < B: soE, is areal-closed, field. (Does the process always stop, no matter in what order the completions
are carried out?)

2002-01-13:029

It is a well-known fact that we can calculate the integral (the antiderivative, actually) of any rational function in
closed form: the result involves rational functions and logarithms—precisely, it is a linear combination of logarithms
(of translations of the indeterminate) with coefficients being rational functions (we remain voluntarily very vague as
to where the coefficients live; on the reals, for example, we would need to introduce the arctangent). Th|s is done by
writing the ratlonal function in partial fractions, and integrating each separately: weﬂ@ﬂév = W
fork # 1, and ;2 = log(t — a).

Every polynomial in logarithms (with coefficients being rational functions) can still be integrated in closed form:
this is done by integrating by parts as many times as necessary. For exgmpie; dt = Jo—gt + [ f(t a) =

ltoif — 1°§t + log(; 9 There is one exception, however: to evaluate expressmns suﬁtﬁgsdt, we need to
introduce the dilogarithm, given byilog’t = —W (anddilog 0 = 0). It would seem that the smallest ring
(whatever that means) which contains rational functions and is closed under integration (antiderivatives) is the ring of

polynomials (with coefficients being rational functions) over all polylogarithms of linear terms. This is already rather

complicated.

If we introduce logarithms in the denomlnator things get even worse. Notably, there appears the logarithm
integral functionlit = k% Note that/ ;-5 dt = lit"*! except, weirdly, wherk = —1 and then/ ¢ oy =
loglogt.

Question: what is the smallest field containin@nd hence all rational functions) and closed under integration?
(Precondition: how to define it rigorously?) Do its elements have some canonical form? Is equality decidable (and
with what complexity) in this field?

2002-01-20:030

Let A be a finite alphabet, and* the free monoid with basd (the set of words with letters id). Define a
partial order onA* by lettingu < v iff we can writeu = uy ---u,, andv = vg - uy - vy - - V1 - Uy - Uy, Where
uy, - .., U, andug, . .., v, are elements ofl* (possibly equal to the unit element, i.e. the empty word). In other terms,
u = v iff u can be obtained by removing certain letters (anywhere) frpwe say that is asubwordof v. Higman'’s
lemmastates that for any infinite subsgtof A* there must exist distinet, v € S verifying v < v. (Update: for a
proof, and a probably better statement, 2662-01-23:031)

This leads us to consider the following game: two players take turns in selecting an elemérduddject to the
condition that no subword of it have already been played, and the first player who cannot play loses. Evidently, this
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game is not really fascinating (because any player who can play can win in a single move by playing the empty word),
and it is more interesting to consider theisére” version of it, where the empty word is forbidden (or, equivalently,

the first player who cannot playins the usual meaning of the word “misére” in combinatorial game theory). Call
these two games respectively thermal Higman gamend themisére Higman game(Update: see als®002-12-
01:047and2002-12-01:049

For S a subset ofA*, we define inductively thieengthand theGrundy functionpwrittenlg(S) andGy(S) respec-
tively, for the normal and misére versions of the Higman game (we lgriféS) andGy 5 (S) for the normal versions
andlg,,(S) andGy,,(S) for the misere versions), as follows:

e 1g(9) is the smallest ordinal (strictly) greater thigt.S’) for everyS’ = S U {w} with w a word no subword of
which belongs taS, and moreover with the constraint thatis not the empty word in the misére case (in other
words, S’ is a legal move in the game from the positiénthat is, the position wher§ is the set of words that
have been played).

e Gy(9) is the smallest ordinal different frofdy(S’) for everyS’ = S U {w} as above.

Higman’s lemma assures that this inductive definition makes sense (i.e. terminates). Of course, thdgue of
or Gy(S) depends heavily on the chosen alphaltefor more clarity, we might write, e.dg(A4, S) to emphasize on
the choice of4, or evenlg(n, S) wheren = card A (because only the size df really matters).

We havelg(S) = 0 iff every word (non-empty in the misére version) has an elemest a§ subword; in other
words, iff the player who just played (the “second player”) won. Of cougse(.S) = 0iff e € S wheree is the empty
word; andlg  (S) = 1iff € ¢ S andlg,,(S) = 0; and more generally, when¢ S, we havelg (S) = 1 + 1g,,(S)
(proved inductively). Concerning the Grundy function, we h&yg(S) = 0 iff the second player has a winning
strategy, which consists of continuously playing so t6a{S) = 0 after the play: these configurations form the
“kernel” of the game. Of coursé&zy  (S) = 0 iff € € S (as previously mentioned, if the game is not immediately
over, the first player wins by playing the empty word); and for &rguch that ¢ S, we haveGy  (S) = 1+ Gy, (S)
(proved just as the corresponding statementdpr So we can now concentrate on the normal version of the game,
which is more elegant than the misere version (even though the normal game itself is vacuous, its Grundy function is
of interest).

For A = @ (and consequentld* = {e}), all is trivial: 1gn(0,{e}) = Gyn(0,{€}) = 0, and conse-
quently, lg5 (0, @) = Gyn(0,2) = 1, or in other wordslg,,(0,2) = Gy, (0,2) = 0. For A = {a} (so
that A* is isomorphic as a monoid to that of the natural numbers, written multiplicatively as powers of
havelgy (1, {a*}) = Gyy(1,{a*}) = n (by induction onn), so thatlgy (1,2) = Gyx(1,@) = w (or in other
wordslg,,(1,2) = Gy (1,9) = w). Forcard A = n > 1, things are already vastly complicated. We can
notice however that it ¢ A then for anyS C A* we havelg(A U {a},S U {a}) = 1g(4,S), and similarly
Gy(AU {a},SU{a}) = Gy(4,5). In particular, forA = {a,b} we havelgy (2,{a}) = Gyy(2,{a}) = w. Note
also that ifGy ,,(n, @) = 0thenGy,;(n + 1, @) > 0 becaus&sy ,,;(n + 1,9) # Gy (n+ 1,{a}) = Gy (n, )
by definition; so in at least one half of all possible alphabet lengths the first player has a winning strategy in the misére
version of the game from the canonical initial position.

Vincent Nesme observes that the Higman game with alphébet{a, b}, in the situation where the wotd has
already been played can be identified with Conway’s “poisoned wafer” game: start with the quarter integd¥plane
(where(k, ¢) € N? is identified with the word/*b*) and each player in turn chooses a remairfing /o) and removes
{(k,£) : k > ko AL > £y} from the plane until one cannot play (and then wins in the normal version and loses in
the misére version). Calculating the Grundy function for this game is very difficult; but the length can be determined
without too much trouble. Namely, when there remafull lines or columns and points not in a full line or column,
the length isv - r + s; and so for the full plane it is?. Thatis,lgy (2, {ba}) = w? (and of courség,, (2, {ba}) = w?).

(Updated 2002-01-23 It would seem thalg(2, {a?}) = w? (as a variant of the poisoned wafer represented by
the wordsb*ab’ andb™). It then seems plausible to conjecture thg®, {w} = w!(*) wherel(w) is the length ofw
(the number of letters im), solg(2, @) = w*. Do we perhaps havg (n + 1, @) = w'~ (™2) for everyn € N?
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2002-01-23:031

Here is an understandable (but non constructive) proof of Higman’s lemma (used as the starting 2@0&- of
01-20:030Q. This is based (“instanciated” would be a better word) from a proof that Alain Frisch provided.

Recall the following definitions fron2002-01-20:030Let A be a finite alphabet, and* the free monoid with
baseA (the set of words with letters id). Define a partial order oA* by lettingu < v iff we can writeu = uy - - - u,,
andv = vg - Uy -Vt Up_1 - Uy - Up, Whereuy, ..., u, anduyg, ..., v, are elements ofi* (possibly equal to the unit
element, i.e. the empty word). In other termsz v iff u can be obtained by removing certain letters (anywhere) from
v; we say that, is asubwordof v.

We say that a sequené¢e;) = (wg, w1, ws,...) of elements ofA* is miraculousiff there do not exist integers
i < 4’ such thatw; < w;, in other words, if no word in the sequence is a subword of some ulterior word. Higman'’s
lemma states that there is no miraculous sequence, and our goal is to prove this.

(A side note: ir2002-01-20:030we made the weaker statement that i€ A* is infinite then there exist,v € S
distinct such that. < v. This turns out to be equivalent: indeed, if we assume the latter(«ap)ds a miraculous
sequence of elements df, by removing from the sequence every word that has some subword later in the sequence,
we clearly obtain a still infinite and still miraculous sequence, about which a contradiction can be found by applying
the assumed statement. In fact, we have tacitly used the stronger f@@02701-20:03Pand the proof was more or
less contained in our description of the game...)

Now, assume there exists a miraculous sequence, that starts, sayowithA*. Remove the first letter from
wp, and see whether it still starts some miraculous sequence: and keep doing so until wevfinehich starts a
miraculous sequence but such that after removing its first letter it no longer does. Since any word reduces to the empty
word after removal of a finite number of initial letters, and since the empty waahnot be part of a miraculous
sequence, we certainly can find such

Now there exists a miraculous sequence that starts with(®ayi1 ) (Wherewy has been found above). Remov-
ing again the first letter fromy; as much as possible, we can assume (thatw, ) starts a miraculous sequence, but
no longer does so after removal of the first letter fream And we continue in this way to form a miraculous sequence
(w;) = (wo, w1, ws, . ..) which satisfies the following minimality condition. (;) is a sequence obtained by remov-
ing the initial letter from some term ¢iv, ) and altering the subsequent terms in any way whatsoevev (ke w; for
1 < 1o, v;, IS Obtained by removing the first letter @f,,, andv; for ¢ > i, are arbitrary), thetfv;) is not miraculous.

Having obtained this minimal miraculous sequefeg) = (wo, wy, ws, .. .), We observe that an infinite number
of terms thereof must start with the same letter, say A (becaused is finite). Sayy: N — N is an increasing
function such thatv,, ;) starts with the letted.

We then construdtv;) as follows: remove the initiald” from this sequence of words, keep all words before the
initial one unchanged, and delete all others. That,is= w; for i < io whereiy = ¢(0), andwv;,; is obtained by
removing the initial @” from w ;.

Then by minimality of(w;) the sequencéy;) is not miraculous, that is, there exigt< j’ such that; < v;.

But by adding possibly an initiald” to v; (precisely ifj’ > i,), and,only if so(precisely ifj > i,), possibly also
an initial “a” to v;, we construct two terms); andw; of the sequencéw;) with i < ¢’ (viz. i = j if j < iy and
i = ¢(j — i) otherwise; and similarly fot’) such thatv; < w;. This contradicts the miraculousness ef).

This contradiction proves Higman’s lemma.

Note that this proof is non constructive and does not seem to give a bound on the ordinal length of the Higman
game (defined i2002-01-20:03p—though perhaps a closer study will reveal more information.

2002-02-07:032

(I am grateful to Alain Frisch for teaching me about the following concepts.)

A totally ordered se¥ is well-ordered iff there exist no (strictly) decreasing sequence u; > ug > --- Of
elements ofF (this uses the axiom of dependent choice, but no matter: we always work with the full axiom of choice);
alternatively, iff for every sequende;) of elements of there are < j such that; < u; (a mere restatement of the
same fact).
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When we translate these conditions to partially ordered sets, we get two different notions. Precisely, a partially
ordered seF is calledwell-foundedff there exist no (strictly) decreasing sequenge> u; > us > - - - of elements
of E. And a partially ordered séf is calledfairly orderediff for every sequencéu;) of elements oft there are < j
such that:; < u;. Evidently, a fairly ordered set is well-founded, but the converse is not true (consider an infinite set
any two distinct elements of which are incomparable).

To say thatF (a partially ordered set) is well-founded is equivalent to saying thatdf E satisfies the condition
that “if x € E is such that everyy € F with y < x belongs toS, thenz itself belongs toS” then S = E.
Indeed, if E' is a partially ordered set containing a decreasing sequence u; > us > ---, consider the set
S ={x € E:-In(z > u,)} of elements of’ which are not greater than some term of the sequence: a moment’s
thought suffices to check that it satisfies the stated induction condition, ang y&tS so S # E. Conversely, if
E'is a partially ordered, anf # F satisfies the stated induction condition, then there exists £ C S (because
S # E) and then—by the condition in question—there exists< ug in E with u; ¢ S, and so on, forming a strictly
decreasing sequence of element&of

Equivalently, a partially ordered set is well-founded iff every non-empty sulisét £ contains a minimal
element (in the sense that it is an elemen§ddr which there is no element ¢f that is strictly smaller). This is easy
to see.

There are several equivalent conditions to being fairly ordered. One is this: a partially ordefedssfairly
ordered iff every non-empty subsgtof F has a finite (strictly) positive number of minimal elements. Indeed, that it
has minimal elements follows by the above, since “fairly ordered” is stronger than “well-founded”; and if there were
an infinite number of such, then we could form a sequence of pairwise incomparable elentgrdascohtradiction. In
fact, we can also use this reasonging to see that being fairly ordered is equivalent to the (seemingly weaker) condition
of being well-founded and having no infinite antichain. Indeed; is well-founded and has no infinite antichain and
(u;) is a sequence of elementsBf the reasoning shows that there is a minimal element of the sequeneg, s@th
greatest index. Now x;1; is not minimal, so by well-foundedness it is greater than a minimal elemgntyith
¢ < k, and we then have, < up41 wWith £ < k + 1, as was to be shown.

Yet another equivalent condition can be described as follow#: i a partially ordered set, |df* be the set
of finite (possibly empty) subsets @& no two elements of which are comparable. Partially orBérby letting
{ui,...,um} <H{v1,...,v,} iffforevery j € {1,...,n} there exists € {1,...,m} with u; < v;. For commodity,
we write the elements df* as follows: the empty set will be written and the finite sefuy, . . . , u,, } will be written
up A -+ A upy, With eachu € E being implicitly identified with its singleton i (this identifiesE' as an ordered
set and a subset @* with the induced order). We exterrdto make it into an associative and commutative binary
operation on* by declaring that if: < v are elements af thenuAv = w (this suffices, given a finite set of elements
of F, to reduce it to a subset no two elements of which are comparable, thus giving an elemignt @learly, if
u andv are elements ofs* thenu A v is the greatest lower bound afandwv in E*; notice however that even if
andv belong toF and their greatest lower bound already exist&int may not coincide with: A v in E* (if does
coincide exactly whem andv are comparable). The property is then thais fairly ordered iff E* is well-founded.
Indeed, ifE has a strictly decreasing sequence, it is also strictly decreasifg;iand if £ has an infinite antichain
(u;) then the sequencg, ug, ug A u1,up A ug A us, ... Iis a strictly decreasing sequencefify; this proves that it
is well-founded therE is fairly ordered; conversely, if is fairly ordered andl’ > ug > uy; > us > -- - is a strictly
decreasing sequence &1, choose for each € N av; in u; such which is not in any; for i < j, then we cannot
havev; < v; for ¢ < j. This formulation means that we can also rewrite the condition of being “fairly ordered” as an
induction principle, only this time not of' but on E*.

TODO: ranks, heights, lengths and so forth; extending orders by total orders and relation with ranks, heights,
lengths and so forth; lengths of games; products of fairly ordered sets are fairly ordered and explicit bounds on this;
applications to Higman’s lemma (s2602-01-23:03} obtaining explicit ordinal bounds.

See als@?002-05-21:0430r some further questions an*.
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2002-03-11:033

(“Tao of Topoi.”)

An (elementary)oposis a category which admits finite limits (in particular it has a terminal obje@nd a
binary productx; in fact, it suffices to suppose the existence of these), an internal Hom functor (this means that there
exists a functot A, B) — AP together with a natural isomorphisitom (C, A?) = Hom(B x C, A)) and a subobject
classifier (this means that there exists an oljeand an arrowrue: T — € such that every monomorphisth — A
is the pullback oftrue by a unique morphismy: A — € called the characteristic morphism Bfin A).

These properties already suffice to construct arbitrary finite colimits. For example, to consttiinet initial
object), using the key idea thal “= V,.q)p", we consider the identity morphiséd — € and thetrue morphism

true

Q — Q (actually the composit® — T =" Q), and we form their product, giving a morphisth — Q2, or, if
we prefer,T — Q2%. Now we have a diagonal morphisfii? — Q2> which is a monomorphism, so it has a
characteristic morphisf?** — Q, so the composition of the two morphisms we have defined giyesa T — Q
which is the characteristic morphism of — T. Similarly, the motto b V ¢ = Y(,.o)((p = 7) A (g = 7)) = 1"
allows one to construct the binary coproduct.

If Cis a category, we have a topos of presheaves of sef$ ap. contravariant functors fro@ to Sets. Limits
and colimits are computed pointwise. The internal Hom takes two preshéaes$B on C to the presheafi” whose
sections(AZ)(U) on an objecU of C are natural transformations froBom(—, U) x B to A. And the subobject
classifier(2 is the presheaf whose sectiddslU) on an objectU of C are sieves o/ (i.e. sets of arrows with target
U closed under composition on the right when meaningful). If furthes a Grothendieck topology o@ (i.e. a data
giving, for every object/ of C a set of sieved (U) onU, called covering sieves, such that (i) the full sieve with target
U belongs toJ(U), (i) if S belongs taJ(U) andh:V — U is any arrow therh*S = {f|hf € S}isin J(V), and
(i) if Sisin J(U) andR is a sieve orUU such that for every, € S the sieveh* R is covering, therf is covering),
then we have a topos of sheaves of set§@n.J), i.e. the full subcategory of that of presheaves consisting of those
presheaves! for which, for everyS € J(U), sections ofd on U coincide exactly with matching families of sections
of AonS. The internal Hom is the same as for presheaves. And the subobject cld3sifigre sheaf whose sections
Q(U) on an objeclU of C are J-closed sieves ol (i.e. sievesS with targetU having the property that if' covers
h:V — U, thatis,h*S € J(V), thenh is already inS; the converse is automatic). The inclusion functor of the
category of sheaves in the category of presheaves has a left adjoint, the “associated sheaf functor”, which is itself left
exact.

More generally, in a topo§, we say that d.awvere-Tierney topologis a morphismj: Q — Q such that
(i) j o true = true, (i) joj = j and (i) j o and = and o (j x j), whereand: Q?> — Q is the characteristic
function of (true, true): T — Q2. In other words, for the internal logic of the topgsis an idempotent modalizer
which preserves finite conjunctions. A monomorphiSm- B is calledj-closed (respj-covering, sometimes called
“j-dense”) iff its characteristic function: B — 2 factors throughj (in the sense that o x = x; resp. satisfies
j o x = true); every monomorphisn® — B factors as’ — C’ — B whereC’ — B is j-closed and” — C’ is
j-covering. We say that an objedt (of 7) is asheaf(for j) iff for every j-covering monomorphisn® — C’ the
associated maHom(C’, A) — Hom(C, A) is bijective. Then the subcategdy; (7) of 7 consisting ofj-sheaves is
again a topos. The inclusion funct®li,; (7)) — 7 of the category of-sheaves in the original topos has a left adjoint,
the “associated sheaf functor”, which is itself left exact. The internal Hom funct®idf7 ') is the same as that af;
and the subobject classifig); of Sh;(7) is the equalizer of: 2 — Q andtrue: T — Q.

Lawvere-Tierney topologies generalize Grothendieck topologiesisfa Grothendieck topology on a category
C, the morphisnmy: Q — Q in the topo§etsCop of presheaves of’, which takes a sievé on U (an object ofC)
to the smallest/-closed sieve(.S) containingsS (that is,;(.5) is the set of all arrow# with targetU such thati* S
is covering), defines a Lawvere-Tierney topology. Furthermore, sheavgsafat sheaves fof coincide, and so do
the associated sheaf functors. And every Lawvere-Tierney topology on a presheaf topos comes from a Grothendieck
topology in this sense.

TODO: examples of Lawvere-Tierney topologies (the topology, the skyscraper topology); construction of
topoi of coalgebras on a comonad (2082-03-12:03% f?gtorization of geometric morphisms; examples in algebraic



geometry. (See als2002-12-05:055nd2002-12-21:053

2002-03-12:034

(“Mental exercises in abstract nonsense.”)

Let G be a group. Consider on the one hand the cate§ety of sets and on the other hand the categ@iyets
of G-sets (sets together with an action®@jf morphisms being maps preserving the actiod-f both are topd. We
can define several functors between these categories:

e ¢:GSets — Sets, X — X/G takes aG-setX to its set of orbits.

o ¢*:Sets — G Sets, X — X takes a seX to theG-set whose underlying set i, with trivial action ofG.

e ¢.:GSets — Sets, X — X takes aG-setX to its set of points fixed under the action@f

e p:Sets — G Sets, X — G x X takes a seX to the “free G-set with basisX”, that is, theG-set whose
underlying set ig7 x X with trivial action on theX component and (left) translation action 6n

e *: G Sets — Sets, X — X takes aGF-setX to the underlying set.

e ,:Sets — G Sets, X — Hom(G, X) takes a sei to the (“cofree”)G-set whose underlying set is that of
maps (of sets) frond to X and whose&>-action is given by(g - 6): h — d(hg) for g € G andé € Hom(G, X).

We have some adjunction relations between these functors: natnelyy* - ¢, andy, - ¢* - 1,; of course,
composing them, we get some further adjunctiohg, - ¢*¢, andyy¢ - ¢*¢* andyyyp* - ,* (plus the trivial
adjunction on the identity functor ddets, and the usual? x — 4 Hom(G,—) in Sets).

Note that:

e ¢ is neither full nor faithful. It preserves all colimits because it has a right adjoint (in particular, it is right exact,
that is, it preserves finite colimits). Howevex,does not preserve limits: in fact, it does not even preserve binary
products.

e ¢* is full and faithful. It preserves all limits and colimits because it has both left and right adjoints.

e ¢, is neither full nor faithful (note that it superficiallseemso be full, but in factHomg sets(G, &) is empty
whereasHomgets (¢« G, 9. @) = Homgers(o,2) 1S NOL, if G has the action by (left) translation on itself). It
preserves all limits because it has a left adjoint (in particular, it is left exact, that is, it preserves finite limits).
Further,¢, does preserve coproducts; however, it does not preserve (even finite) coequalizers (hence not all finite
limits).

e 1y is faithful but not full. It preserves all colimits because it has a right adjoint (in particular, it is right exact,
that is, it preserves finite colimits). However, does not preserve limits: in fact, it does not even preserve binary
products.

e ™ is full and faithful. It preserves all limits and colimits because it has both left and right adjoints.

e 1, is faithful but not full. It preserves all limits because it has a left adjoint (in particular, it is left exact, that is, it
preserves finite limits). Howevep,. does preserve colimits: in fact, it does not even preserve binary coproducts.
(In the language of topoi, the paifg*, ¢..) and(v*, 1. ) (of adjoint functors, where the left one is left exact) mean

that we have tw@eometric morphisms: G Sets — Sets andi: Sets — G Sets, both of which aresurjections
which means that the inverse image functars, (0*) are faithful.)

Concerning the non trivial units and couinits of the adjunctions, we have:

° 77;): lasets — ¢* @1, the unit ofg, 4 ¢*, maps aG-setX to its set of orbitsX/G with trivial action of G through
the canonical surjection.

o ¢y 9. — lisets, the counit ofp* - ¢,, includes the set of fixed points oi@&setX in X.

® 7y Isets — "¢y, the unit ofyy + 9%, maps a seX to the setG x X by sendingr to (1, z).

o ey ", — lgets, the colinit ofy* 4 ¢, senddom(G, X)) to X by applying onl € G.

We now pause for a moment to speak of monads and comonads in the next note.

2002-03-12:035
“Recall” that amonadon a categonC is a triple (T, n, 1), whereT: C — C is an endofunctor, ang: 1 — T
andu:T? — T are natural transformations satisfying i n7 = 17 = po (Tn) and (i) p o ur = po (Tu).
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Dually, acomonads a triple(V, ¢, v), whereV: C — C is an endofunctor, and V — 1 andv: V — V?2 are natural
transformations satisfying (§y ocv = 1y = (Ve) ov and (ijvy ov = (Vv) ov.

Every pair of adjoint functorg” 4 U (with, say,F: A — B andU:B — A), determines a monad/ F, ), )
on A, wheren: 1o — UF is the unit of the adjunction, and: UFUF — UF is given byUer (wheree is the
colinit). Dually, the same palf - U determines a comondd'U, ¢, ) on B, wheree: FU — 1g is the colnit of the
adjunction, and: FU — FUFU is Fny.

“Recall” further that aralgebraon a monadT, n, 1) (on a categonyC) is a morphism\: TA — A, with A an
object of C, such that (A ona = 14 and (i) A o ua = Ao (TA). Algebras on a monafl’, n, ) form a category
where morphisms from: TA — Ato N: TA’ — A’ are morphisms: A — A’ (in C) such that\’ o (Ta) = avo X:
this category is called thEilenberg-Moore categorgf the monadC7.

Given amonadT, n, 1) on a categoryC, andC7 its Eilenberg-Moore category, we have two important functors:
U:CT — C which takes an algebrs T A — A to the objectd of C, andF: C — C7 which takes an object of
C to the “free algebraji4: T2 A — A; these functors are adjoiit 4 U and we havé/F = T with unit 5, and with
1 = Uer wheree is the cotnit. (But note that if’ is given from a functor adjunction, we may not find the functors
we started with: the Eilenberg-Moore category of a monad is only one possible resolution of the monad as a pair of
adjoint functors, universal in a certain sense, whereas the Kleisli category is coliniversal. A fioftbe form—up
to an equivalence of categories— of the forgetful functor from an Eilenberg-Moore category is saichtmadic
this implies that it has a left adjoint.)

Dually, given a comonaV, ¢, ), we have the notion of eodlgebra which is a morphism: A — V A such that
(i) eaoy=14and (i)vs oy = (Vv) o . Codlgebras on a comongH, ¢, ) also form a category with the obvious
morphisms, the Eilenberg-Moore categ@@y of the comonad. And again, the forgetful functérC" — C and
the “cofree coalgebra” functaii: C — CV are adjoint in the sendé - H, with UH = V, with couinite and with
v = Uny wheren is the unit.

If (T,n, 1) is amonad (on a categoy), and the functof” has a right adjoint’, then the natural transformations
eV — landv:V — V2 deduced fromp:1 — T andu: T? — T by adjunction (and Yoneda — this could
use some more explaining) mak¥, ¢, ») into a comonad. Furthermore, the (Eilenberg-Moore) categoriés- of
algebras and -coalgebras are isomorphic, in a way that commutes with the forgetful functor, by serifiiatpabra
M TA — Ato the codlgebra: A — V A deduced by adjunction. And the forgetful functérC” = CV — C has
a both a left adjoint (the “free (co)algebra” functBr C — C7) and a right adjoint (the “cofree (co)algebra” functor
H:C — CY).

Some examples: it/ is the forgetful functor from the category of groups to the category of sets, it has a left
adjoint F’ (the free group functor), and the mon&id= U I takes a set to the set of elements of the free group with that
basis, whereas selects the basis elements, angerforms a “removing of quotes”; @, n, 1)-algebra is simply a
group, that is, the forgetful functdr we started with is monadic. (Indeed, in sufficiently abstract terms, an “algebraic
structure” is a monadic functor from a category to the category of sets...)

We can also také/ to be the inclusion functor from the category of abelian groups to the category of groups:
it has a left adjoint?’, which takes a groufy to its abelianization/ DG (where DG is the derived group, i.e. the
(normal) subgroup generated by commutators) seen as an abelian group. Then th& mobidd takesG to G/ DG
(this time seen as a not necessarily abelian group which happens to be abelian), this thétcanonical surjection
G — G/DG andy is the identity. A(T,n, u)-algebra is a groug: together with a morphisrt’/ DG — G which,
when composedn the rightwith the canonical surjection gives the identity @n but there is no other way for that
than forG to be abelian. S& again is monadic.

The example ofG-sets (se€2002-03-12:03% illustrates the situation where we have an adjoint monad and
comonad: the forgetful functap* taking aG-set to its underlying set has both a left adjoint, the “ffeset functor”
1y which takes a seX to G' x X and a right adjoint, the “cofre@-set functor”y, which takes a seX to Hom(G, X).

So the monad)*+), is left adjoint to the comonag™*+., andvy*i),-algebras are the same thing«as),-coalgebras;
and it turns out that both are the same thing-asets, sa)* is both monadic and comonadic.

If X is a topological space, lek be the functor taking a set to the sheaf of locally constant functions in that

20



set, and lef” be the functor taking a sheaf 0¥ to its set of global sections: we have an adjunctiord I". The
colinite on a sheafF is the map of sheave&T'F — F which embeds locally constant sections in all sections, and
v:AT'F — ATATF is the identity. A codlgebra is a she&f on X together with a map;: F — AI'F which
composed (on thieft) with e z: AT'F — F gives the identity, in other words it is (isomorphic to) a constant sheaf (a
sheaf in the image ah). So the functorA is comonadic.

Slogan: monads are important, because many interesting categories can be realized as Eilenberg-Moore categories
of monads; comonads are important becausg,if a topos, andV, ¢, ) is a comonad offl such thatl” is left-exact
(which is the case in particular whéhhas a right adjoint, which is then a monad as we have seen) then the Eilenberg-
Moore category of coalgebras dn is itself a topos (and, furthermore, this construction and that of sheaves on a
Lawvere-Tierney topology, se#02-03-11:033and2002-12-05:051are “essentially the only possible constructions
of topoi”, in the intriguing sense that every geometric morphism factors essentially uniquely and up to isomorphism
as a composition of the two).

2002-03-16:036

(Updated 2002-03-17to reformulate over an arbitrary base rikigand to add the word “reduced” here or there.
Thanks to Joél Riou and Olivier Wittenberg for various remarks and explanations.)

In notes2002-01-03:023hrough2002-01-11:0271 considerered the question of constructing, for a given ring
A, a (reduced?) zero-dimensional rifig, (i.e. every prime ideal of{ 4 is maximal) that would serve as a “zero-
dimensional skeleton” oA (probably the universal morphism frovh to a (reduced?) zero-dimensional ring) or
something of the kind.

Let k be a (commutative) ring and ffScm; be the category of affink-schemes (opposite to the category of
(commutative):-algebras). Define a topology ahffScmy, by declaring a family of arrowSpec B; — Spec A to
be covering iff every prime idegl € Spec A of A is the (inverse) image of some prime idgac Spec B; of some
B; (by the arrowSpec B; — Spec 4, i.e. A — B;). (Sanity check: does this, indeed, constitute a Grothendieck
topology—see, €.g2002-03-11:033or a definition?)

It appearsthat this topology coincides with the— topology (topology in the sense of Lawvere & Tierney) on
the Zariski topos. Is this correct?

Clearly, not every representable presheafdfScm,, is a sheaf for the topology we have defined. ESgsc k|t]
is not a sheaf, for the morphisipec k & Spec k[u™!] — Spec k[u] (WwhereSpec k maps to the origin oSpec k|[u]
andSpec k[u*!] maps as the complement of the origin) is covering, but it does not descend sectfns bft]. Is
this topology indeedtrictly finer (i.e. having strictly more covers than) the canonical topologAdfScm;,?

It vaguely seems that (the presheaf represented by) an affine s¢hemd is a sheaf (for the topology in
question) iff thek-algebraA is reduced and zero-dimensional: is this true (at ledstdfan algebraically closed field,
or giving some definition of zero-dimension like “having zero-dimensional geometrical fibers”)? (Incidentally, is it
true that if A — B is a morphism of (commutativé}algebras, withd reduced and zero-dimensional, not necessarily
noetherian, then it (the morphism) is flat?) If so, is it true that the associated sheaf (sheafification) of a representable
presheaf is again representable? In that case we can witedtK 4, and call it the zero-dimensional skeleton of
Spec A.

2002-03-17:037

(This expand2002-03-16:036

Let £ be a (commutative) ring, andffScm,, the category of affiné-schemes (opposite to the category of
(commutative)-algebras). Recall that a morphisipec B — Spec A is said to besurjectiveiff for every prime ideal
p of A there exists a prime ideglof B such thap is the inverse image af by the map of ringsd — B; equivalently,
it means that for every fiel& and every morphismpec K — Spec A there exists a field extensidnof K and a
morphismSpec L. — Spec B so that the obvious diagram commutes (EGA, 1.3.5.3); surjective morphisms are stable
under base changél( 1.3.5.2). Say that a familgpec B; — Spec A of morphisms (inAffScm,) is surjective iff
Spec[[, B — Spec A is surjective (note: this is equivalent to the map of schelggSpec B; — Spec A being
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surjective—making use, of course, of the fact that the taget A is affine). We can define a topology &affScmy,
by saying thatS € J(Spec A) (a sieveS covers its targe$pec A) iff the family S of morphisms (with targeipec A)
is surjective: call this the surjective topology @¢nffScm;. Joél Riou notes that it might be of use to add some
hypothesis such as “(locally?) of finite presentation”, but let us try to do without (the essential idea being that a
morphismSpec B — Spec A between affiné:-schemes is, in any case, affine, and therefore quasi-compact).

We wonder for whichk-algebrasl” the representable preshéafec T: AffScm; — Sets, Spec A — Hom(T,
A) is a sheaf for the surjective topology.

Suppose thatl is such ak-algebra, that (the presheaf representeddpdc A is a sheaf, and let € A. We
considerB = A ®;, A and the two morphismg;, p2: A = B such thatp;(t) = ¢t ® 1 andps(t) = 1 ® t. We let
B; = B/(x®1) be the quotient oB by the ideal generated hy® 1 = ¢, (x), and we letBy = B(,g1) = A @k A
be the quotient ring making ® 1 invertible in B; call .: B x By, x By the canonical map (canonical surjectiqron
one component, canonical mgpon the other). Itis easy to see ttatec B, W Spec Bo — Spec B (the map of affine
schemes associateddds surjective. By the hypothesis oh(and becaus®, @ g B, = 0), every mapA — Bj x Bs
must factor through. Consider in particular the mafx A — B; x By given by (t) = (¢1(p1(t)), ta(p2(t))): there
must exist: A — B such that) = ¢ o). Now ¢ (z) = (0,1 ® z). So(x) must be in the ideal generated by
r® 1, sayy(zr) = z(x ® 1) with z € B, and we have(z ® 1) = 1 ® 2 in By = B(yg1). Therefore, there exists
z € B=A®, Awhichgoestar™" @z € B(,g1) = Ag) @k A.

So, question: what does it tell us on an elemewf a k-algebrad thatz=! @ = € A(z) ®1 A belongs to the
image ofA ®; A? What does it tell us on l&-algebraA that every element satisfies that property?

A simpler question: what does it tell us on an elemenf a k-algebraA thatz—! ¢ A(,) belongs to the image
of A? What does it tell us an/aalgebraA that every element satisfies that property? Here we can probably answer
that: the image ofd in A, containsz ! iff it contains everything, i.e. iff the magl — A,y is surjective, which
means that the open sepec A,y — Spec A is closed, and then is the product of two rings and is equal to a
nilpotent plus the product of an invertible element by an idempotent; and conversely. And very probably if this is true
of everyx then A is zero-dimensional (compag®02-01-07:02%

At least if k£ is a field andA an integral domain, we can probably answer the more complicated question: for
A @y, Ainjects in A, @ A (as soon ag is not zero) by the canonical map, and the condition implies thiat
invertible; so if it holds for every, we see thatl is a field.

2002-03-18:038

We resolve the question askedZ802-01-07:024

For any ringA, we have mentioned i2001-12-30:022hat the boolean algebit&om(Z?, A) of idempotents of
A is isomorphic bye — D(e) to the boolean algebra of clopen subsetSéc A. Indeed, it is quite clear that if
is idempotent therD(e) is clopen; on the other hand, if is a clopen subset &fpec 4, then (i) its structure as an
open subscheme is the same as its (thickest!) structure as a closed subscheme, and (ii) it is therefore an affine open
subscheme and so is its complement, at which point it is easy to se¢ ith#tte product of two rings and gives rise to
two complementary idempotents, etc.

On the other hand, ifi is a reduced zero-dimensional ring, then for any prime idea Spec A of A (m is
maximal, by hypothesis), the localizatioh, of A atm is a reduced zero-dimensional local ritigusa field (because
it has a unique prime ideal, which is necessabilyecause the ring is reduced). So the canonical mgp— A/mis
an isomorphism. In particular, jf € m, it goes to0 in A,,, so there exists an element, say m, such thatfg = 0;
and therm € D(g) C V(f). This shows thaV’(f) C Spec A is open for anyf € A (and it is also closed by the very
definition of being closed).

The two preceding paragraphs mean that is a reduced zero-dimensional ring, for afye A we can define
an idempotent with D(e) = V(f); and thenf + e is invertible in A (because it belongs to no maximal ideal) and
fe=0;s0f = (f +e)(1—e)is the product of an invertiblg¢ + e by an idempotent — e.

Together with what was already proven2002-01-07:024we can therefore state that a ring is reduced zero-
dimensionalff every element is the product of an invertible by an idempotent.
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2002-03-24:039

(“Tao of Topoi in Algebraic Geometry.”)

Let k& be any (commutative) ring. LeAffScm;, be the category of affink-schemes (opposite to the category of
(commutative)-algebras). We can define several important Grothendieck topologiA€iSem;,:

e The Zariski topology. We say thatkaalgebraA is covered by localizationd y, ), ..., A(y,) of A (whereAy,)
is obtained by inverting’; in A) iff the elementsfy, ..., f,, of A generate the unit ideal. More generally, we
say thatA is covered by am-algebraB for the Zariski topology iff there exist elemenfsof A generating the
unit ideal and such that the suth— @, Ay, of the localization maps factors as— B — P, A(y,) where
A — B is the given map; and we say thétis covered byA-algebrag B;) ;¢ (not necessarily in finite number,
although a finite subset will always suffice) for the Zariski topology iff it is covere@yBj.

e The étale topology. We say that dralgebraB is faithfully étale iff the mapd — B is finitely presented (that is,
Bisthe quotient of somd|[ty, . .., t,] by afinitely generated ideal of it), formally étale (that is, for atwalgebra
C and ideall of C such that’? = 0, the canonical map frotHom 4 (B, C') to Hom 4 (B, C/I) is bijective) and
faithfully flat (“flat” is automatic by étaleness, so we are just stating that for any nonAenedule M, the
B-moduleM ® 4 B is non-zero; and actually it suffices to check thiddfis an integral domain quotient of).

And we say that &-algebrad is covered by am-algebraB (resp. byA-algebrag B;) ;c.;, where, again, a finite

number will actually suffice) for the étale topology iff there exiBts— B’ such that the composit¢ — B — B’

is faithfully etale (resp. iffA is covered by, B; in that sense).

e The fppf (faithfully flat and finitely presented) topology. We say that adaalgebraB is fppf iff B is finitely
presented and faithfully flat ovet (i.e. for every injective homomorphism of-modulesM’ — M the ho-
momorphismM’ @ 4 B — M ® 4 B obtained by tensoring witl over A is still injective). And we say that
ak-algebrad is covered by am-algebraB (resp. byA-algebras(B;);cs, where, again, a finite number will
actually suffice) for the fppf topology iff there exists — B’ such that the composité — B — B’ is fppf
(resp. iff A is covered byP; B; in that sense).

e The fp[qgc] (faithfully flat [and quasi-compact—but in the case of affine schemes the latter is automatic]). We say
that ak-algebraA is covered by am-algebraB (resp. byA-algebrag B;) ;< 7, Where, again, a finite number will
actually suffice) for the fp[qc] topology ifB is (“fp[qc]”) faithfully flat as an A-algebra (resp. iffd is covered
by ; B; in that sense).

(Of course, the above is formulated withalgebras by abuse of language and we should reverse all arrows to get
definitions onAffScmy,.)

For example, the map from? = Speck[z,y] to A} = Speck[z] obtained by injectings[z] in k[z,y], is
faithfully flat and finitely presented, so it is covering for the fpqc and fppf topologies. It is certainly not étale, but it is
still covering for the étale topology (the whole point of this example, indeed) because it has a section; indeed, the fact
that it has a section shows that it is coveringdol Grothendieck topology.

A presheaf(of sets on the category of affine schemgs)s a contravariant functor fromAffScm; to Sets
(which can be, equivalently, considered as a covariant functor fragebras to sets); it is sheaffor one of the
above-defined topologies iff for every covering of-algebrad by A-algebragB;);c s (for the topology in question)
the diagram of set$(A) — [, 7(B;) = [I, ;» F(B; ®a Bj), with the obvious maps, is exact (i.e. the first arrow
is injective and its image is the set of points where the two latter coincide).

(...to be continued...)

2002-03-31:040

(Many thanks to Joél Bellaiche and Yves de Cornulier for various results in this note.)

Let X be any set. If4 is a (commutative) ring, we write (X) = @D.cx A the sum ofcard(X) copies ofA as
an A-module andAX =TT, v A the product okard(X) copies ofA (ditto), which containsA(X) and is also its
dual (A®¥))*. We have a short exact sequetice> AX) — AX — AX /AX) _, 0 of A-modules. This gives us a
sequenc® — (AX /A ) — (AX)* - AX - Ext'(A¥ /AKX A) — Ext'(AX, A) — 0 (the next term would
beExt! (AX), A), but this vanishes a4(*) is free by definition). Further note that the duality®) x (A(X))* — A,
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which is nondegenerate on the left, when readl&® x AX — A, implies thatAX) injects in(A¥)* in a way that
is right inverse to the arroA™ )* — AX defined above; so the image 0f*)* in AX by the latter arrow contains,
at least,A(X).

Fact: if A = Z is the ring of integers, then the image @~ )* — Z¥X is preciselyZ(*X), which we have just
seen it must contain. In other words, and expliciting the arf@w)* — ZX, we must prove that if is a linear form
onZX, andé, (for x € X) the element oZ* defined bys,(z) = 1 andd,(y) = 0 if y # z, then there are only
finitely manyz € X such that(é,) # 0. Assume on the contrary that there are infinitely many sucffhen we
might as well assume th&f = N and thatc; # 0 for eachi € N, wherec; = £(9;); in fact, we might as well assume
thatc, > 0 for eachi. Now, for eachi € N, letb, € N be such tha® > 2¢;, and consider the elemente ZN
given by the sequendeg, 2% 2bo+b1 2bo+bi+bz ) Now sinceu — dy is divisible by2%, the intege(u) — ¢, must
also be divisble by, or, in other terms{(u) has the samé&, low-order bits ag,. Similarly, £(u) — (co + ¢12%) is
divisible by 2b0+?1 so the nexb; low-order bits of¢(u) are theb, low-order bits ofc;. And so on. If¢(u) > 0, we
have finished, because all bits @rafter a certain rank, so all are zero for sufficiently large. 1f¢(u) < 0 then all
bits arel after a certain rank, sq > 2%~ for i sufficiently large—but we have assumed the contrary,3fiz> 2c;.
This completes the proof.

The same statement definitely doest hold over an arbitrary ringl. In fact, if A = k is a field, then the map
(kX)* — kX is clearly always surjective. The proof appears to work with the following hypothesis timere exists
an elemenp € A (namely2 in the above proof) such that multiplication pys injective (i.e.p is “regular”) and such
that(),cy P*A = 0; the arguments with inequalities are probably red herrings, but this requires a little more thought.

If there exists a non principahrd(A)T-complete ultrafilter on X, in other words if there exists a measurable
cardinals such thatard(A) < s < card(X), then(AX /AX))* is not zero. Indeed, i € A¥, since the union of all
theu!(a), for a ranging over, is X (and therefore belongs &), by card(A)*-completeness, there exisiss A
such thatu=!(a) € %, and thisa is necessarily unique since far# o’ the setsu=!(a) andu=(a’) are disjoint (so
they cannot both be in the ultrafilter): call suetthe limit of v along% . Taking the limit is manifestly am-linear
map, and, sinc&/ is non principal, depends only on the classudh AX /AX), So% defines a non-zero element
of (AX /AX))* (non-zero because the diagonal map- AX /AX) is a section of it: that is, the limit of a constant
function is that constant value).

Fact: if A = Z is the ring of integers, the(Z" /Z™)* = 0. Indeed, assume on the contrary that there exists a
linear form¢ on ZN that vanishes o). Say that an element of Z" is 2V -divisibleiff 2" |u(n) for everyn € N;
we then have/(u) = 0 because the value éfon w is the same as that on the sequence obtained by replacing the first
valuesN of u by zeroes (for anyV), which must then be divisible b —for any N—and this is possible only if
{(u) = 0. But similarly, £(u) = 0 if u is 3V -divisible, with the obvious meaning. However, any elemerit'dttan be
written as the sum of aV-divisible element and & -divisible one, using a Bézout relation betwe¥nand3™. So
¢(u) = 0 for anyu € Z~, which was to be proven.

Again, the statement definitely domet generalize to an arbitrary ring, because ifA = & is a field the vector
spacek™ /™) is non trivial, so its dual also is. The proof appears to work with the following hypothesik timere
exists an element € A (namely2 in the above proof) such that multiplication pyis injective (i.e.p is “regular”)
and such thqﬂbeprA =0, and an element € A (namely3 in the above proof) verifying the same hypotheses, and
such thap andg generate the unit ideal of.

If the ring A satisfies the hypothesis that")* = AM (that is, the image ofAY)* in A" is insideA™) and
(AN/AM))* = 0), then it satisfieg A~X /A(X))* = 0 for any setX of cardinality less than the first measurable cardinal
(resp. any set if measurable cardinals do not exist). Indeed, agsisnadinear form ond¥X that vanishes o (X,
Consider the se# of subsetd/ C X of X such that is identically zero ondX\U (considered as a subset 4f
by extending with zeroes ofi). It is clear thatZ is a filter onX. It is not always true that it is a ultrafilter (think
¢ = limy, + limg, with %4, %, two o-complete non principal ultrafilters ak), but it is always true that there exists
Y C X, with (X \Y) ¢ %, such that the restrictio?¥’ |y of  toY is a ultrafilter, where the “restriction” in question
is as follows: it is the set o/ C Y such thaty/ U (X \ Y') € % (things are much more natural in terms of ideals

than in terms of filters, but tradition demands filters). For if it were otherwise, we could Write Uy U U, with
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Uo, Uy & % andUp N Uy = @, and then considering/ |, we could writeUy = Uy U Uy with Uy, U & % |y, and
U;NU{ = @, and so on. This implies that there are elemetsi , us, . . . of AX with come fromA%e AV AV2
respectively, and which satisfyu;) # 0 for all i. But these can easily be used to construct an elemént'df which
does not come from (™), something we assumed does not exist. So we car¥fiad explained, and we might as well
assume that” = X and therefore tha# is a ultrafilter onX. It is non principal becausévanishes om(X). And

it is o-complete because otherwise we can find elemeqts, , u,, ... of AX which come fromAfo A% AF2
with Fy, Fy, Fs, ... disjoint, such thaf(v;) = 0 for all 7 but the functionu extendingu; on eachF; and0 elsewhere
satisfied(u) # 0; and these data can be used to construct a non-zero elemfefit 64("))*, something we assumed
does not exist. So finally we haveracomplete non principal ultrafilte#” on X, andcard(X) > « for x the smallest
measurable cardinal.

There is much mystery in this whole matter. Note that we have two different conditions (on aimgja sefX):
first, that the image of AX)* — AX falls inside AX) (call this the “finiteness writing condition”), in other words
given? € (AX)*, only finitely many of thec, = ¢(J,) are non-zero; and second, that the njdg’)* — AX in
question is injective (call this the “uniqueness writing condition”), in other wordg trebove suffice to determinge
The “uniqueness writing condition” can fail in the presence of measurable cardinals; the “finiteness writing condition”
on the other hand requires very little on the ridg(and nothing at all onX). But, strangely, to prove that the
“unigueness writing condition” holds for small enoughwe apparently need not only the condition in question for
X = N (and for the given ringd) but also the “finiteness writing condition” fof = N. We can wonder, for example,
whether there actually exists a rinfysuch that the uniqueness writing condition holds Xor= N but not for some
larger X still smaller than the first measurable cardinal, or whether this apparent problem is just a weird artifact of our
proof technique.

2002-04-06:041

The claim made i2001-12-21:014hat, if K is any field andB a faithfully flat (i.e. non-zero)<-algebra, an
elementz of Bsuchthat ® 1 — 1 ® = € B ®k B is nilpotent necessarily comes froR), is false Indeed, ifK is
a non perfect field, say of characteristicand K7~ its perfect closure, theR? ~ is faithfully flat as aK -algebra,
and foreveryz € K? ~ theelement ® 1 —1® 2 € K? ~ ®@x K? ° is nilpotent. (And this is not a problem of
the perfect closure being not of finite type ovér because a similar statement holds at finite levels.)

What is true, however, is that the elements obtained in this way are precisely the elements of the perfect closure of
K;thatis, if K is any field andB a faithfully flat K -algebra, an elementof Bis suchthat @ 1 —1®z € BRg Bis
nilpotent iff z belongs to some purely inseparable algebraic extension fididintluded inB. Indeed, the statement
over algebraically closed fields was (it seems correctly) prove2Diil-12-21:014and the more general statement
hold by Galois descent. | will try to give a clear and irreproachable proof later on.

But it certainly seems that the hopes2ff01-12-21:014vere hasty, and the question demandes more thought.

2002-05-02:042
LetA, = {(wg,...,7s) ER*TL 129 > 0,...,0, > 0,70 +--- + x5, = 1} be the simplex of dimension and
let 1 be the measure of\, given bydu = s!dxz; A --- A dxs. Then we have

ko!- - kg!s!

ko ks 0 S

o xydu =

/A& 0 s (ko+ -+ ks +8)!

In particular,u(Ag) = 1 (we say thaj is the uniform probability measure on the simpl&y).

Here is a sample application of this formula. Giver: (xg, ..., xs) € A,, we consided a uniformly distributed
random variable if0; 1] and we let be the index such thaty + - - - + 2;_1 < 0 < ¢ + - - - + x; (for almost every
value of @ this is well-defined); in other wordg, = 0 with probability zy, # = 1 with probability z; and so on.
We actually consideN independent variable®, ..., 0y and we letM,, ..., M, (with My + --- + My, = N) be
the count of the correspondinig, . .., ¢ which are equal t0, . . ., s respectively. Lety = (yo, ..., ys) be defined
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as(My/N,...,M,/N): for a givenN, the random variablg is distributed over the grid of points of denominator
(dividing) IV in A with a probability law that follows the multinomial distribution, namely

N!
Pr((yo,...,ys) = (Mo/N,...,M/N)) = mxé% ceahfe

Note thatE(y) = = (expectation ofy), andV/(y;) = z;(1 — x;)/v/N (variance ofy;: eachy; is a binomial variable)
andCov(y;,y;) = —xixj/\/ﬁ (covariance oly; andy; for i # j).

Now let x be uniformly distributed o\, (according to the law: we have defined above), and defipén the
same way as previously, for variabl@s, . . ., 8,y independent of. In Bayesian way, fiyy = (My/N, ..., Ms/N)
and considet as a random variable for this new conditioning: we have

M

..xs

_ Ny
Pr ((mo,...,xs) = (z0,...,xs)) = mmo 0.
We then have, according to the integration formula given at the startfthg) = (M; + 1)/(N + s+ 1)
(add a fictitiousl to every measure), and(z;) = ((M; + 1)(N — M; + 5))/((N + s + 1)*(N + s + 2)) and
Cov(ai, aj) = —((M; + 1)(M; + 1)) /(N + s+ 1)*(N + 5 +2)).

2002-05-21:043

(This pursues some ideas fr&2802-02-07:032

If E is a partially ordered set, we |éi* be the set of finite antichains df, i.e. finite subsets off no two
elements of which are comparable, and we partially ofdeby letting {u1, ..., un}t < {v1,...,v,} iff for every
je{l,...,n}thereexists € {1,...,m} with u; <v;. We embed (as a partially ordered set) ii* by sending
to {u}, and we shall identify® with its imagevia this embedding. The operation sending a finite tuple . . . , u.,)
of elements ofF to its set of minimal elements, seen as an elemeti‘gfdefines a mag™ — E*, which factors
through the action of the symmetric gro@p,, on E™ and form = 1 gives the previously mentioned embedding
E — E*; we writeu; A -+ - A u,, for the image ofug, . .., u,,) by this map, and" for the image of the empty tuple
(in other words, the empty set, seen as an element*dpf Thus, every element di* can be writteruy A - -+ A uy,
for someuy,...,u,, € E, and this expression is unique if we impose theto be pairwise incomparable, and we
can always reduce to this form by removing non-minimal elements. Further tpeeration extends uniquely to a
commutative and associative operationfoh havingT as neutral element, which is simply taking the greatest lower
bound of a finite set.

We pointed out irR002-02-07:032hat £ is fairly ordered (i.e. well-founded and without infinite antichains) iff
E* is well-founded. (Being well-founded means satsfying the DCC: every descending chain of elements is stationary.)

The surprise is that it is not always true in this case ffiais fairly ordered: it may have infinite antichains. |
thank Larry Hammick for raising the question and for pointing out that my initial reaction was wrong; the following
counterexample can be found in Diane Maclagan, « Antichains of Monomial Ideals are FiRiteceedings of the
AMS 129 (2001), no. 6, 1609-1615, alspath.CO/9909168 (see example 4.1), and was initially published in
D. Duffus, M. Pouzet & I. Rival, « Complete ordered sets with no infinite antichaim3isgrete Math 35 (1981),
39-52.

ConsiderE = {(i,j) € N? : i < j}, and let define a partial order dn by (i, j) < (i’,j’) iff eitheri = i/ and
j < j',orelsej < i';in other wordsi, j) < (¢/,5') iff j < j/ and eitheri = ¢’ orj < ¢’; and(¢,j) < (¢, 5") iff
j < j" and eitheri = i’ or j < i’. Now E is well-founded, because in any strictly decreasing sequence of elements
of E, thej coordinate must strictly decrease, which is impossible unless the sequence is finite. Furthérimase,
no infinite antichain, because(ify, jo) belongs to an antichain, then every other elenént) of that antichain must
satisfyi < jo; but each of the finitely many possible valuesi @iin be used by at most one element of the antichain
(because two elements afwith the same coordinate are comparable); so the antichain has at jpast elements.
On the other hand, fdt > 0, consider the elements, = (0, k) A--- A (k— 1, k) of E* (note that the element(s, k)
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through(k — 1, k) of E are pairwise incomparable). i < ¢ the we cannot hav8, < S, becausék, ¢) is in S, but
is not greater or equal to any element%f, and conversely, we cannot hasle < S, becaus€0, k) (or indeed any
element ofSy) is in Sy, but is not greater or equal to any elementSpf So theS, for k£ > 0 form an infinite antichain
in E*.

We therefore have an example of a partially orderedtsstich thatE™ is well-founded (i.e F is fairly ordered)
but E** is not (i.e.E* is not fairly ordered). This leads us to consider the following notions. Ddfitfe wherea
ranges over the ordinals, as follows: I6t° = E, and fora + 1 a successofy*(@+1) = (E**)* (with the embedding
of E** in it), and ford a limit ordinal let E*° be the inductive limit of theZ*® for o < ¢ with the embeddings we
have defined. Define theell-foundedness generatiaf F to be the smallest such thatE*” is not well-founded,
andoo if E*7 is well-founded for all ordinaly. (Updated 2002-05-22to allow for ordinal generations.)

The well-foundedness generation of a partially orderedssist > 0 (of course,co > 0) iff E is well-founded.
WhenE is a well-ordered (this implies “totally ordered”) set, manifestly, is isomorphic toE U {T}, whereT is
a greatest element, so it is again well-ordered; this means that the well-foundedness generation of any well-ordered
set is alwaysx. So partially ordered set8 whose well-foundedness generatiordif.e. F is not well-founded),
(i.e. £ is well-founded but not fairly ordered) av (e.g. E is well-ordered) are easy to construct, and we have given
an example of a partially ordered set whose well-foundedness generafio e obvious stupid question is then:
what well-foundedness generations are possible among partially ordered sets?

2002-07-07:044
TODO on future notes in this diary:

¢ Divisions of the simplex according to proportional electoral system: is it of equal measure?

e “Eclectic” subsets of an algebraically closed field. (83062-07-13:04%nd2002-07-13:046

e Describe a necessary and condition sufficient for a morphism of schemes (or more generally sheaves of sets on
affine schemes for the flat topology) to be finite, where the condition is sought in the internal language of the
topos (as far as possible).

¢ Associating a dimensiahiring (spectrum of connected components) to a given ring as the associated sheaf functor
for the -— Lawvere-Tierney topology: how can we describe it concretely? Can we do something for irreducible
components?

e If X C PV is a smooth projective variety defined by known equations, faitd — X a rational curve, how to
compute the; such thatf*Tx = @, €(¢;): describe the actual algorithm, give examples.

e A composition law on deformation classes of morphisin®! — X (for X a smooth projective variety). Con-
crete computation in the case whe¥eis the blowup ofP? at the origin.

¢ Describe the arithmetic operation on ordinals- 5 being the largest possible order-type of a well-order on the
disjoint uniona ¥ 8 extending the sum order; similarky,: 3 being the largest possible order-type of a well-order
on the cartesian product extending the product order. Show that these are Conway'’s operations.

e Seek a nice sum and product operation on polarized games (with a finer equivalence relation than that Conway
uses, so products of games can be taken).

o Differentially closed fields and how they formalize symbolic computation.

¢ Iterated Godelization cannot provide completeness. 2868-10-18:055

¢ (“Recall”...) Construction ofC, and the completion of the algebraic closurdfgft] inside Mal’cev-Neumann
rings.

2002-07-13:045
Let £ be a subset of an algebraically closed fieldWe say thatZ' is eclecticwhen it satisfies the following
equivalent conditions:
e For any natural number, if Z is an irreducible component of the Zariski closure of a subséf’ofc k", then
there exists a finite seit and a partition( Nx)xea Of {1,...,n} suchthatZ =[], ., Zx where, for each € A,
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either Z, is the diagonal otV (that is, the subset of constant maygs — k), or N, is a singleton{i} and 7

is the singleton of an element € E.

e For any natural number, if U is a Zariski open set of a (closed) algebraic subvarkéetyf £, and ifU N E™ is
infinite, then there exists a straight liewhose parametric equation in function of a paraméetam be given by

n equations (foi ranging froml throughn), each of the formx; = ¢; wherec; € E, orz; = t, with at least one

equation of the latter form, such thatC X andL meetsU.

We will show that these two conditions are, indeed, equivalent, but before we set out to do so, we introduce a
bit of terminology. For any subset of k&, we call a (closed) subvariety of k™ “ A-multidiagonal” iff there exists
a finite setA and a partition(Ny)xea of {1,...,n} such thatZ = [],., Zx where, for each\ € A, either Z,,
is the diagonal o™, or N, is a singleton{i} and Z, is the singleton of an element € A. Thus, the first
condition above states that is eclectic iff any irreducible component of the Zariski closure of any subsét’os
E-multidiagonal. Note thak-multidiagonal subvarieties of dimensionof £™ are just singletons of points df™.
Futher,E-multidiagonal subvarieties of dimensiamf £™ are precisely the straight lindswhose parametric equation
in function of a parametercan be given by, equations (for ranging from1 throughn), each of the forme; = ¢;
wherec; € E, or z; = t, with at least one equation of the latter form (this is the sort of lines given by the second
condition above).

We also define théypeof an A-multidiagonal subvariety of k™ to be the set ofV, of the first kind ¢, is a
diagonal): more rigorously, the type &f is the datum consisting of the finite sEtthat is the union of thev,, for
which Z, is not a singleton, endowed with the equivalence relation whose equivalence classes\§réntlyeestion
(note that the number of equivalence classes in the type is the dimension of the multidiagonal variety); we abusively
tend to omit the mention of the equivalence relationfowhen speaking of a type. AA-multidiagonal subvariety
of k™ is determined uniquely by its tygE and its projections, each one being a singlefes}, on the coordinates
i & T: itis then the product ofc} € AT" (whereT” = {1,...,n} \ T) by Ay, whereA is the unique (“model”)
multidiagonal subvariety o7 having typeT’.

Let us show now that the two conditions are, indeed, equivalent. Sugpasésfies the first, and let andU
be respectively a closed algebraic varietykdf(for somen € N) and a Zariski open set of such that/ N E™ is
infinite. Call F' the latter set. The Zariski closure fcannot be just a finite number of points (&ss infinite), so it
must contain an irreducible componentof dimension> 1. Obviously,Z C X (becauseX is Zariski closed), and
Z NU # & (otherwiseZ would be disjoint fromF' and the union of all other components would be a smaller Zariski
closed set containing’). Now by the first condition above (which we have assumg&dy, F-multidiagonal. EithetZ
is of dimensionL, in which case it is precisely the we seek. Els¢ is of dimension> 2. Choose an € {1,...,n}
such that the projection df onto thei-th coordinate is not constant (and hence, by irreducibility, is at)obuch an
1 exists becausg is not a point. Of the infinitely many hypersurfacestflefined by the equations = cforcin £
(notice thatF is infinite sincel/ N E™ is), not all can be contained i \ U, so there exists € E with the property
that the intersectio’ of Z and the hyperplane; = ¢ meetsU. ThenZ’ C X andZ’' N U # @, and we also note
that 7’ is E-multidiagonal (its type is obtained by removing one equivalence class from the type &o proceed
with Z’ as we have withZ: again, if its dimension ig we have finished, otherwise there is a hypersurfaten Z’
with the same properties, and so on until the dimensidn\ghich gives us the desired

Conversely, supposE satisfies the second property above, and we must show that it satisfies the firstZSo let
be an irreducible component of the Zariski closure of a subset £, and we must show that it has the structure
detailed above. Replacing by F' N Z, we may assume that is the Zariski closure of’. Now consider all possible
typesT # @ of multidiagonal subvarieties of dimension0 of k™: for each sucl, writing 7" for the complement
{1,...,n} \ T, consider the sef of ¢ € k™" for which the (unique)-multidiagonal subvariety o™ of type
T having projection; on eachi € 77, is contained inZ. This Hy is a Zariski closed subset @f/" (being the
complement of a projection of the complement£¥, and Hy x Ar C Z, whereAr is the unique (“model”)
multidiagonal subvariety of” having typeT” (indeed,H is precisely the largest possible satisfying this condition).
Either Z is contained in the uniolr” of all the Hyr x Ar oritis not. If itis, then it is contained in one of them (by
irreducibility), and then by projecting the whole situation/oh, we are done by an easy induction on the dimension
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of Z (the coordinates iff" play no role at all in the problem). If it is not, then writéfor the complement it¥ of the
unionY in question. Since’ is the Zariski closure of', the latter cannot be contained¥hplus a finite number of
points. SoU N F', and in particulat/ N E™, is infinite, and by the second condition above (which we have assumed),
Z must contain ariz-multidiagonal lineL which meetd/. But this is impossible sincé must be contained il by
construction of the latter.

(Whew! That was a excruciatingly tedious. We continu@®®2-07-13:046

2002-07-13:046

(This continuef002-07-13:045

In 2002-07-13:045%ve have given the definition of an eclectic subBesf an algebraically closed field as one
which satisfies the following two equivalent conditions (reworded to be slightly more understandable, if less precise):

e For any natural numbert, any irreducible component of the Zariski closure of a subsétofC k™ is multidiag-
onal, that is, is the product of diagonals and singletons.

e For any natural number, if U is a Zariski open set of a (closed) algebraic subvardétyf £, and ifU N E™ is
infinite, then there exists a straight lideC X which meetd/ and is the product of a diagonal by a singleton in
some power oft.

Evidently any finite subset of is eclectic, and: itself is not eclectic. We can actually define the notion of
beingng-eclectic, wheren is a natural number: just replace “for any natural numisein the definitions by “for
any natural numben < ny”; and the proof we have given i2002-07-13:048hat the two conditions are equivalent
applies equally well tavy-eclecticism. It is obvious that any subgetof & is 1-eclectic. Trivially,n-eclectic implies
n'/-eclectic forn’ < n, and eclectic means-eclectic for anyn.

Here are a few natural questions:

e Isit (by any chance) true that if a subgebf an algebraically closed fiellis 2-eclectic then it is eclectic?

e If Eis an eclectic subset of an algebraically closed fielhdk’ is an algebraically closed field containikgis
E necessarily eclectic ik’'?

o If E'is a set of algebraically independent elements (over the prime field) in &fieddZ eclectic?

e Is it true that for any algebraically fieldthere always exists an infinite eclectic subBgbetter even: having the
same cardinality ag)?
| tend to think that the answer to all of these is “yes” (but with a great doubt as to the first).

Here is a construction which should give an infinite eclectic subs@t aftart by enumerating all (closed) alge-
braic subvarieties of (for variablen) in a sequencéV,),cy. Construct a sequende,,),.cn of elements ofQ by
induction ony as follows. Assume alt, for v < i have already been constructed. Consider all lihés someQ”
whose parametric equation in function of a parametsam be given by, equations (for ranging from1 throughn),
each of the forme; = z,, for somey; < pu, orz; = ¢, with at least one equation of the latter form. And for each
suchL andV, for . < p living in Q" for the samen, if L is not completely contained ivi,, consider all values of the
parametet for which the corresponding point ih happens to be i,. Since there is only a finite number oK p
and a finite number of, (omitting all those which play no role because they live i@"awith n greater than any of the
V, do), all of theset are only finite in number. Now choose somg that is not among them nor equal:tp for any
v < p. This defines a sequen¢e,,).cn Of elements of) which is injective, and whose range should be an infinite
eclectic subset df). The same applies, in fact, to any countable algebraically closeéd set

| also conjecture the following: a subs@tof an algebraically closed fieldis eclectic iff for any natural number
n, if X is an algebraic (closed) hypersurface:6f and if X N E™ is infinite, then there exists a straight lihewhose
parametric equation in function of a parametean be given by: equations (for ranging from1 throughn), each
of the formz; = ¢;, orx; = ¢, with at least one equation of the latter form, such that X. This is obviously
necessary, but it is (apparently) weaker than the (second form of the) definition in three countg:isitstiken to be
all of X; second X is taken to be of codimensidn and third, the:; are not required to be if. | believe that despite
these three weakenings, we still get a condition equivalent to being eclectic; but | can’t prove that any of these three
weakenings (with or without the others) still gives an equivalent condition.

29



(Thanks to Joél Riou for discussions on this subject.)

2002-12-01:047

This adds t®002-01-20:030and remarks on “Higman’s game” defined there.

Péter Horvai points out to me that Higman’s game has a trivial winning strategy (by this | mean the misére
Higman’s game: because the normal Higman’s game has an even more trivial winning strategy, which consists of
simply playing the empty word immediately). Namely, if the alphatétas an odd number of letters, the first player
plays a single-letter word and wins by reducing to being second player on an even alphabet; if the alphabet
an even number of letters, the second player wins by choosing an invohutibn— A without fixed points, and,
whenever the first player plays a wod responding by playing*(w), whereh*: A* — A* is defined by applying
h to every letter. Manifestely;*(w) is not a subword ofv (since it has the same length and is not equal); nor is it a
subword of any other previously playeds A*, for if it were thenw would be subword of*(u), andh*(u) has been
played already (either just before, or just afigrf the second player has stuck to the same strategy—so the second
player can always play, and therefore wins.

2002-12-01:048

This adds td2002-01-20:03@&nd generalizes “Higman’s game” defined there.

If M is any monoid (= set with an associative multiplication having a unit element), we can define a rglation
on M by lettingz < y iff we can writex = 21 ---z,, andy = yo - X1 - Y1 Yn_1 * Tn - Yn, Wherezq, ..., x, and
Yo, - - -, Yn @re elements of/. In general, this is not an order relation: for example\lif= G is a group, then: < y
holds for anyx andy. However, it is reflexive and transitive (i.e., it is a preorder relation). In fads the smallest
preorder onM/ that is invariant by left- and right-translation and such that « for anyx. If M is such that< is an
order, we say that/ is cancellation-fregnote: there may be several different definitions for this, and I'm not sure as
to how they relate).

Note that the relatioa= defined byx = y iff « < y andy < z, is an equivalence relation, and it is compatible
with the monoid structure so that the quotiédy = has a natural monoid structure, and is cancellation-free.

Higman’s game onV/ can then be defined in the straightforward way: two players take turns in selecting an
elementr € M such thatr does not satisfy < x for any z that has been previously played, and the first one who
cannot play looses (in the normal version) or wins (in the miséere version). Of course, we might as well play the game
in the cancellation-free monoit!/ / = defined above. Now Higman’s lemma (prove®®02-01-23:03)assures that
for a monoid of finite type (that is, having a finite set of generators), the game always terminates in a finite number of
steps (no matter what the players choose), so that some player has a winning strategy.

We can of course defined the lendf), (M) (and the Grundy function as welizy 5 (M), if needed) of the
monoid as the length and Grundy function respectively of this game. For exalgple) = w andlg y (N?) = w?

(the Higman game olN? is Conway’s poisoned wafer game) and more genetgly(N") = w".

2002-12-01:049

Recall a few facts about closed unbounded subsets of a regular uncountable cardiized. iégular uncountable
cardinal (seen, of course, as the set of ordinais «), we say that a subsét C « is closed unboundeiff C' is closed
but not compact for the order topology @an(and the topology it induces ofi, which incidentally has then good
taste of being the order topology @r); in a more natural way_' C x is closed unbounded ifup C = x and
sup C’ € CU{k} forall C' C C. For any suclC, there is a unique (strictly) increasirfgx — x whose image i€,
andf is continuous; and conversely, any increasing continjfous— ~ has a closed unbounded image: an increasing
continuous functions — « is sometimes calledormal—then normal functions or and closed unbounded subsets
of k can be identified; evidently, if is normal thenf(«) > o for all « < &.

(Vincent Nesme tells me that closed unbounded subsetsaoé also calledlubsin «, where “club” stands for
“CLosed UnBounded”. A rather smart terminology when the term is often mentioned.)
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The intersection of two closed unbounded subsetsisfclosed unbounded. More generally, the intersection of
less thank closed unbounded subsetsrofs closed unbounded. The set of limit points (accumulation points) of a
closed unbounded subsetofs closed unbounded. The image of a closed unbounded subset by a normal function is
closed unbounded. The set of fixed points of a normal function is closed unbounded.

Another important property is the following. [{C,).< iS @ collection of (otherwise arbitrary) closed un-
bounded subsets ef we define theidiagonal intersectiom,<,C as{{ < x : § € [, C¢} or equivalently as
Nu<,(Ca U a) (note that this definition is ever-so-slighty different from that found in Jech, but the difference is, of
course, completely inconsequential). Note that the diagonal intersection does not change if wetgfipce, \ «

(we remove the elements < « from C,). More importantly, note that the diagonal intersection does not change
if we replaceC,, by ﬂﬁ<a C3, so that(C,) is decreasing (in the broad sense), and then the diagonal intersection is
{¢ < K : £ € C¢}. The important property, of course, is that the diagonal intersection is again closed unbounded.

Supposef:x — & is normal (i.e. continuous and (strictly) increasing). Pyt= x, letC; = f(x) be the
image of f, andC, = f(C;) image of its image (which is the image 62), C3 = f(C3) and so on, more generally
Cat1 = f(Cq) for a < x together withCs = (;_; C for 6 < « limit. Note incidentally that this permits to
define in a natural way thg-th iterate off with itself (namely,f° is the normal function which enumerat€s).
Unfortunately, | do not see a natural and elegant way to relate the diagonal intersectiorCgftihéhe set of fixed
points of f (there should be a relation—or a common generalization at least); though naturally every fixed goint of
is in the diagonal intersection (since it is in the plain intersection).

If F'is a function taking closed unbounded sets b closed unbounded sets ©f such that?’(C') C C for all
C closed unbounded, we define another operatioof the same type by letting'(C') be the diagonal intersection
of the F°*(C) for a < , whereF°(C) is defined as one would thinkr°°(C) = C, F°(e+1)(C) = F(F°*(C))
forall @ < k, andF°(C) = Np<s F°B(C) for § < & limit. Then, of course, we can lef, = F, G; = G,

G4 obtained as> previously if we takeF' = G, and so on{7,+1 obtained ag> above by takingt’ = G,, and

G5(C) = Ng<qo Go(C) for § < x limit. And then we can definé/ (C) to be the diagonal intersection of thi&, (C')

for a < k. Similarly, we can letd, = F', Hy = H, and iterate the process used to constiidrom F' to create

H, forallaa < k, all taking closed unbounded subsets to closed unbounded subsets. This naturall leads us to define
Fy = F and.%, = G and.%, = H, and for alla we can define#,, and we can again take a diagonal intersection to
define¥... The picture should be clear by then.

In particular, these constructions can be used to define many denumerable ordinals.

2002-12-01:050

(Compare witi2002-01-13:028 This is an attempt to found “semialgebraic” geometry.

Recall that if K is a field, a necessary and sufficient condition for there to exist a total ordé&r sach that
() z <yimpliesx + 2z <y+ zforallx,y,z € K,and (i)0 < xzand0 < yimply 0 < zy forall z,y € K, is that
—1is not a sum of squares iR. When this is the case, we say tHatis orderable furthermore, when there exists
auniqueorder satisfying (i) and (ii), we say thé&f is uniquely orderable The latter condition is weaker than being
real-closed: a real-closed field is certainly uniquely orderable (since every element is either a square or the opposite
of a square) bu® (or Q(+/2)) is uniquely orderable without being real-closed; on the other h@ng2) is orderable
but not uniquely orderable.

We now say that a (commutative) ringyis orderable (an admittedly rather dubious terminology) iff, for every
prime idealp of A, the field of fractiondrac(A/p) of the quotient integral domaid /p is orderable in the previous
sense. It would be eminently desirable to obtain a simple necessary and sufficient condition (not involving quantifica-
tion over prime ideals) for a ring to be orderable.

Note that any orderable field is of characteristifor obvious reasons. It follows that 4 is an orderable ring
then it must contai§ (for if there were an integet € N* not invertible in A then it would be contained in a prime
ideal, contradicting the previous statement). In particular, we can evaluate any elef@@n{tfe ring of polynomials
with coefficients inQ over the indeterminatg at any element ofd; an elementf of Q[t] which is positive (in the
broad sense, i.¢.(x) > 0) on every rational value, or, equivalently, on every real will simply be called “positive”
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(everywhere here, “positive” is meant in the broad sense). Note thfateifQ|t] is positive thenf(xz) > 0 for any

2 in anyreal-closed fieldX, and, hence, imny orderable fieldK” for any order onkX. If now f € Q[¢] is such that
f(x) > 0 for all realz (this time it is not sufficient to assume this for all rationat-however, it suffices to assume it
for 2 in the real-closure a®), or, equivalently, if there exists > 0 rational such thaf (x) = r + g(x) with g positive
in the broad sense—and we summarize these conditions by saying igh&trictly positive”—thenf(z) cannot be
zero for anyz in any orderable fields, so thatf(x) cannot belong to any prime idealifis an element of an orderable
ring A. For example, for any orderable ringy and anyr € A, the element? + 1 € A must be invertible ind.

To put it differently, letQ|¢] be the ring of rational functiong € Q(¢) that have no real poles. Théh|t| is
an orderable ring (this is easy), and fore Q|t] andz € A with A an orderable ring, the elemefitz) € A is
well-defined in the obvious manner. Abstract nonsense: the orderabl® fingepresents the forgetful functor from
the category of orderable rings to the category of sets (muéithgepresents the forgetful functor from the category
of rings to the category of sets).

Any quotient of an orderable ring is orderable: this is an easy consequence of the definition.

For any ring A there is a morphismd — A, to an orderable ringd,. that is universal in the sense that any
morphismA — B from A to an orderable rings factors throughB. Indeed,A,. can be constructed by inverting ih
every element which does not belong to any prime igefar which Frac(A/p) is orderable. This construction takes
any field which is not orderable ti of course; it take& to Q andQ[t] to Q|¢].

If Ais an orderable ring, we can defineligalspectrunas follows. It is the seRSpec A of data consisting of a
prime idealp of A together with a total order on the fieldac(A/p). Actually we can translate such data in a different
way: collect the se&3 of elements: of A such that the class aofin A/p is positive (in the broad sense); theran be
reconstructed as the setobf A such thatr € 8 and—x € 3, and the order onl /p in the obvious way; it turns out
thats3 satisfies the following conditions: (i) if, y € P thenz +y € B, (i) if = € A thenz? € P, (iii) if 2,y € Aare
such thatey € P then eitherr,y € P or —z, —y € P, and (iv) —1 ¢ B; and any set satisfying (i), (ii), (i) and (iv)
comes from a point oRSpec A (and defines such a point) as explained. (Compare with the following definition of a
prime idealp of A: (i) if z,y € pthenz +y € p, (i) 0 € pand ifz € A andy € p thenzy € p, (iii) if z,y € Aare
such thatry € pthenz e pory € p, and (iv)1 € p.)

The condition thatA is orderable in defining the realspectrum is innocent: we can always regldneits
universal orderable algebr&,. as defined earlier, and then defiR€pec A asRSpec A,., which is, anyway, exactly
the definition we have given. But “morally”, semialgebraic geometry only “sees” orderable rings.

We further put a topology oRSpec A by as follows: ifx € A, we defineH (z) as the set of € RSpec A
such that-z ¢ B, or, in other words, prime ideajsendowed with an order ofrac(A/p) such that the image af is
strictly positive inFrac(A/p). These are the subbasis for a topologyRfpec A, that is, finite intersections of such
H(x) are the basis of a topology @&fSpec A with which we endow the later.

We now put a sheaf or ring8 on RSpec A as follows: defineZ(H (z1) N --- N H(z)) as the localization oft
which inverts every € A that satisfieg ¢ p for everyp for which some corresponding is in H(x1)N---NH(xy).

We also put orRSpec A a subsheaf” of ¢ as follows: define”(H (z1) N--- N H(z,)) as the set of elementsof

O(H(x1)N---NH(x,)) such that for everyP of H(z1)N---N H(x,) the image o in Frac(A/p) is positive in the
broad sense (whegeand the order ofirac(A/p) are defined by the datufd): note that the image df in Frac(A/p)

is meaningful precisely because elementg bfave not been inverted in constructid® H (xz1) N --- N H(xs)), by

definition of the latter.

The datum consisting of the topological spd&t&pec A (for some orderable ring) together with the sheaves
and .22 will be called amaffine realscheme

By definition, arealschemavill be a topological spac& endowed with a sheaf of ringg and a subshea®” of
the latter such thak can be covered by open séfssuch that the topological spatetogether with the sheaf of rings
Oy and the subsheaP|;; of the latter is isomorphic to an open subset of an affine realscheme.

This definition is unpleasant because of the words “an open subset of” at the end. The problem, of course, is that
an open subset of an affine realscheme may not be covered by affine realschemes: this is so for very stupid reasons,
for example the open séf (¢) (the open positive half-line) dRSpec(Q|¢]) (the affine line) cannot be covered. To
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make the definition less unpleasant, we introdwegaffinerealschemes.

Specifically, we associate to a “principal” open subSet H(z1) N --- N H(xzs) of RSpec A the ring A’ =
O(H(x1)N---N H(xs)) which we have already defined, together with the sub¥et &(H(x1) N --- N H(xy))
of “positive” functions onH (z1) N --- N H(zs). We can supposedly reconstruct the realschéihe|;, Z|y) as
follows. The seU is the set of data consisting of a prime idpalf A’ together with a total order dirac(A’/p) such
that all elements oP’ have a positive image; the topology &rand the sheave®’ = 0|y and%?’ = &|y; can the be
defined just as previously, taking into account the extra da®inwWe call thisRSpec(A4’, P’) and define aealaffine
realscheme to be (isomorphic to) a realscheme of this form.

This definition is terribly nasty, because, just as | don’t know a straightforward definition of an orderable ring, |
also don't know what simple conditior’?’ must satisfy for{ A’, P’) to be of the form(&'(H (z1) N --- N H(xs)) ,
P(H(z1)N---N H(z,))) (for some affine realschenkSpec A and somer; € A), which then letRSpec(4’, P’)
be defined and be a realaffine realscheme. If | had elegant critefid’oR’) (“rings with positivity conditions”), |
would start by defining a realaffine realschemes from these data, and proceed from then on.

In the mean time, it remains to define morphisms. These are what you'd think: a morphism between realschemes
is a morphism between locally ringed spaces which preserves positivity in the sense that it restricts to a morphism
from the &2 (“positivity”) sheaf of one to that of the other. If the world makes any sense, morphisms¥prec A’
to RSpec A are simply morphisms of rings from to A’—here, of course, it is essential fdf to be orderable (and
possiblyA also); and more generally, morphisms fr®fipec(A’, P’) to RSpec(A, P) should be morphisms of rings
from A to A’ which sendP to a subset of”’.

Whew! That was rather tedious. And, of course, | didn’t do any work here—I just charted the territory: it remains
to check that things, in fact, do work as they should and that this whole semialgebraic (realalgebraic?) geometry does
make sense.

The dream would be to end up with various nice topoi, analogous to the Zariski, étale and flat topoi of usual
algebraic geometry. But whereas the sheaf represent8pdeyZ[¢] (that is, the forgetful functor from rings to sets) is,
in algebraic geometry, an algebraically closed field (for the appropriate, intuitionist, definition of “algebraically closed
field”) in the flat topos, in semialgebraic geometry, in the realflat topos, the sheaf represented by the affine realscheme
RSpec Q|¢t] should be, for a suitable definition, a realclosed field.

2002-12-05:051

Recall (compar@002-03-11:03Bthat on a topo§” with subobject classifieR, a Lawvere-Tierney topologg a
morphismj: Q — Q such that (i)j o true = true, (i) j o j = j and (iii) j o and = and o (§ x j). Note that it follows
thatj > idg (for the natural order of). (Proof: if X is any object off we need to prove that the inequality holds in
Q(X) = Hom(X, Q?), the poset of subobjects &f. Now if U is a subobject o andyy: X —  its characteristic
morphism—so that/ — X is the pullback oftrue: T — Q by xy—thenyy is true when pulled back td/, sojxu
also is: this proves that the subobjggt(U) of X whose characteristic morphim jg, factorsU, which is what we
wanted. Hum, this last part would be better if it were a bit clearer.) In fact, it is a remarkable property of the complete
Heyting algebrd that any (internal!) map: Q — Q satisfying (i), (ii) and (iii) above automatically verifigs> idg,.

In general, given a Heyting algebH, we define a Lawvere-Tierney topology #hto be a map: H — H which
satisfies (i)j(u) > wforallu € H, (ii) j(j(u)) = j(u) forallw € H and (iii) j(uMv) = j(u) M j(v) forall u,v € H
wherer is the meet operation iH.

In particular, if 7 is the topos of sheaves on a topological spAGea Lawvere-Tierney topology o (or, for
short, onX) is precisely a Lawvere-Tierney topology on the Heyting algeB(&’) of open sets ofX, i.e. a map
j: O(X) — O(X) which satisfies (i)j(U) 2 U for all U open inX, (ii) j(5(U)) = j(U) for all U open inX and
(i) J(UNV)=4U)NnjV)forall U andV open inX. One particular example is given as follows:ifis any
subset ofX (endowed with the induced topology), define, tdropen inX, the setjy (U) to be the largest open set
W C X such that NY = U NY; equivalently, it is the union of alV C X suchthat? NY =UNY, or
equivalently the union of allV C X such thatV NY C U NY’; or againjy (U) is the set of all points € X such
thatz has a neighborhood” for whichiWNY = WNUNY, thatis, the set of all points € X in a neighborhood of

33



which U contains all the points df. ForY C X closedjy (U) is simply the uniorl/ U (X \ Y') of U and the (open)
complement ol": we havejy: U — U UV whereV = jy (&) = X\ Y. ForY C X open,jy (U) is simplyY = U
(as given by the Heyting algebra structure). Note Has dense iffjy (@) = @: more generally we will say that a
Lawvere-Tierney topology oX is denseiff j(@) = @, or on any topo¥ iff j o false = false, or on any Heyting
algebraH iff j(L) = L. Note that the-— topologyj = ——, on any topological spacg then sends an open dét
to the regular open set which is the interior of the closur&fon any topos or on any Heyting algebra, is (trivially)
dense in the sense just defined.

A folkloric theorem on topoi states that every geometric morphism between topoi (a geometric mofpfism
7T’ is a pair of functors;f,: 7 — 7’ called the direct image part, arfd: 7' — 7 called the inverse image part, such
that f* - f,, i.e. f* is left adjoint to f,., and f* is left exact, i.e. preserves finite limits) which is an embedding
(meaning that the direct image pditis fully faithful) can be written, up to equivalence of categories, as the canonical
embeddingh;(7) — 7 (see2002-03-11:033or the definition ofSh;(7); here, the direct image path;(7) — 7
is the forgetful functor, and the inverse image part— Sh;(7) is the sheafification functor) from the topos jof
sheaves for some uniquely defined Lawvere-Tierney topojagyZ . We can then call a geometric morphism of topoi
which is an embedding, according as its associated Lawvere-Tigriseydense iffj is dense (in the sense defined
above), closed iffi is closed (that isj = and(idg, j(false))), and so on. It would also seemp(date: this is in fact
slightly dubious) that a geometric morphism is caltgueniff the inverse image partf* admits aleft adjoint (then
written f, and called the “extension by zero/empty” functor): we can then call a Lawvere-Tierney togotgusn
iff the associated embedding of topoi is open—and if the world makes any sensej wilthe given exactly by
some global sectioi/ of Q2 by j(U) = H = U (internalized) (this needs to be checked). We can further call an
embedding of topoi (or, equivalently, a Lawvere-Tierney topolgghpcally closed iff it is open after factorization by
the “closure” which is the Lawvere-Tierney topology definedday! (idq, j(false)).

Many details on this need to be checked, but there do not seem to be any major difficulties.

2002-12-12:052

Important note (2002-12-13): Much of what follows iswrongif not downrightnonsensgand it is incomplete
anyway. | am leaving it anyway, since some of it is of interest (if only to illustrate what nonsense can be spoken when
enough care is not paid), and | will try to correct errors, but | might miss some.

(The following situation was suggested to me by Fabrice Orgogozo.)

Let f: X — S be a geometric morphism of topoi: in other words, we are given two fungtarS — X' (the
inverse image part) anfl.: X — S (the direct image part) witli* left adjoint to £, and f* left exact (which means it
preserves finite limits).

We define a topog = X Xs S (correction: the toposZ defined here isot what should be calledr ;5 S:
see further corrections below) as follows: the object€ @lre triples(F, G, «) where (i) F' is an object oft’, (ii) G is
an object ofS, and (iii) « is an arronG — f,.F in S (by adjunction, this is equivalent to giving the arbitrary arrow
ef*a: f*G — Fin X); and its arrows F', G', /) — (F, G, a) are pair(p, ¢) wherep: F' — F andy: G’ — G
are such thatvi) = (f.¢)a’ (which is equivalent to demanding thatf* o) (f*¢) = pe(f*a')).

We define a geometric morphism Z — X as follows: the directimage part. is given byr.(F, G, «) = F on
objects andr, (¢, %) = ¢ on morphisms, and the inverse image parby 7*F = (F,0,0) (whereQ is first the initial
object ofS and then the unique arrow from it f6) and=* = (i, 0) (correction: this7* is notleft exact since it does
not send the terminal object to the terminal object; so waatdave a geometric morphismas suggested). We also
define a geometric morphism: Z — S by letting w. (F, G, o) = G andw.(¢,v) = ¥ andw*G = (f*G,G,n)
(wherer) is the unit of the adjunctiorf* - f.) andw*y = (f*, ). Finally, we define a 2-morphisih o — f7 by
letting d..: w. — f.m, be given a9, (F,G,a) = a:w.(F,G,a) = G — f.F = f.m.(F,G, ), or, equivalently, by
definingd*: 7* f* — w* by 6*G = (idf+,0): 7 f*G = (f*G,0,0) — (f*G,G,n) = w*G.

So the toposZ = X xsSis equipped with the following data: a geometric morphisn€ — X', a geometric
morphismew: Z — S, and a 2-morphism: o — fr (correction: as explained in the corrections above, this is plain
wrong if it is anything, the toposZ is equipped with morphisnfsom X andS and notto them; and if anything, it
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is coliniversalnot universal as claimed in the following sentence). It is, furthermameversalfor these data, in the
sense that, iff is any topos, and we are given geometric morphignis — X andk:7 — S and a 2-morphism
d: k — fh, then there is a unique geometric morphistfI — Z such thath = 7p andk = wp andd = § x p. In
fact, p is constructed easily enough: f is an object of7, putp(H) = (h(H),k(H),d(H)) and if \: H' — Hisa
morphism, pup(\) = (h(X), k(X)).

Now besides the geometric morphismsZ — X andw: Z — S we can also define &: X — Z by letting
U.F = (F, f.F,ids,r) and¥.p = (¢, frp), andV*(F,G,a) = F and¥*(p,1)) = ¢: we trivially note that
U* = ,, so that¥* not only has the right adjoin?,, but also a left adjoinfr;, = 7*. In the language of geometric
morphisms, this means théttis an open¥* has a left adjointdorrection: this is dubious and needs to be checked))
embedding ¥.. is fully faithful). So ¥ identifiesX’ with an open subtopos &, namely the slice category of objects
of sheaves ove¥,1 = (1,0,0), that is, objects of the forrG#’, 0,0) (recall that, in a topos, any arro@ — 0 is an
isomorphism).

Note incidentally that a morphisify, ¢) in Z is a monomorphism iffp (in X’) andv (in S) both are: the “if”
direction is obvious; for the “only if”, supposgp, ): (F',G’,a') — (F,G,«) are is a monomorphism: then if
v1,7v2: G — G’ are such thaty; = ¢y,, construct the objeet*G” = (f*G",G",n) and send ittdF’, G’, ') by
the two morphisms deduced from and-~, using the adjunctioes™ - w,, namely(s(f*a’)(f*~i),v:), and note that
after composition with{¢, v) they become equal, so since the latter is a monomorphises, v and this shows that
1 is @ monomorphism; similarly, if;, ¢o: F”/ — F’ are such thaps; = g3, construct the objeet*F” = (F”,0,0)
and sendittd F’, G’, ') by the two morphisms deduced framandg, using the adjunction* - 7., namely(g;, 0),
and note that after composition witlp, 1)) they become equal, so since the latter is a monomorphisms, ¢; and
this shows thap is a monomorphism.

We now describe this in terms of the general theory summariz2@02-12-05:051the embeddingy is associ-
ated to a Lawvere-Tierney topology on Z in the sense that is equivalent to the category ¢§-sheaves in such a
way that¥, becomes the forgetful functor add' the sheafification functor. Noyy is easy enough to describe. First
we describd? z the subobject classifier &. Since a morphisnip, v) of Z is a monomorphism iff and«) both are,
we see that a subobject’, G’, o) of an object(F, G, «) of Z is determined by the subobjedts of F' andG’ of G
(in other wordsg’ is determined byy: this is becauser (f*«)(f*¥) = per(f*a’), as we have already noted, and
the right-hand term imposeg sincey is a monomorphism — here,is the colinit of the adjunction). A moment's
reflection then suffices to see tHat is a subobject ofQv, f.Qx x Qs,p), wherep is the projection on the first
factor. In fact, more specifically) z is exactly(Qx, A, p) whereA is the object ofS, subobject off.Qr x Qg, that
classifies data consisting of a subobjé¢of G (a given object) and a subobjekt of f*G with f*G’ included inF’
(note that subobjeci&’ of G are classified bf2s by definition, and subobjects’ of f*G by f.Qx by adjunction).
Or, to say things slightly informally but perhaps more comprehensibig, the subobject of .Q2x x Qs consisting
of those(u, v) such thab*(v) < u, or equivalentlyy < o.(u), whereo*: Qs — H (here withH = f,Qx) is the
arrow that exists for ang-internal complete Heyting algebra taking a truth valtte the least upper bound of the set
containingT with truth valuer and nothing else, and': H — Qg is its left adjoint, which takes an elemenbf H to
the truth value of: = T. We can then state that: Qz — Qz is (idq.,, ja ), Whereja takes(pu, v) in A to (p, 0. (1))
whereo,: f.Qx — Qs has been described. Note tha{false) = false which means that the (open) embeddinis
dense Of course, the opetlf can also be described ¥ (1) = (1,0, 0), a subobject of the terminal objet, 1, id;)
of Z (or, equivalently, a global sectidn, 1,id;) — Qz given by(true, (true, false)), which is the smallest such that
Ju(s) = true).

The Lawvere-Tierney topology corresponding to the closed complednefithe open embedding is then easy
enough to describgis: 0z — Qz is given byjg = (true, (true, log)). (Interrupted...)

2002-12-21:053
Contrary to what | naively believed 2002-12-12:052the fiber product of topoi is not so easy to define (as a
matter of fact, if we take the definition of elementary topoi by Lawvere, Tierney, MacLane, Moerdijk &al, which only
demands the existence of finite limits and not arbitrary small limits, it is not even clear that the fiber product exists,
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because certainly arbitrary finite limits do not exist, as there is no terminal topos: the topos of sets or that of finite sets
come just short of satisfying the conditions).

Supposef: X — S andg: Y — S are geometric morphisms. The (two-)fiber prodditk s V will certainly not
have as objects things like pairs consisting of an objeét @ind one of): this kind of construction might succeed in
defining a (braided?) coproduct, but not a (fiber) product. Rather, the intuition we must follows is similar tp this:
more or less define¥’ as as internal topos ifi, and we must mirror this construction withja

Here is one case when things are simple enough: asSumthe topos of sets, antl is the topos of sheaves (of
sets) on a topological spacé, wheref, takes such a sheaf to the set of its global sectionsfdrtdkes a set to the
corresponding constant sheaf &n And then the subobject classifi@rn, = Qx is externally the sheaf of open sets
of X and internally the set of subobjectsofthat is, f*1); of course,f.Q2y is thesetof open sets ofX, that is, the
topology onX: so the setX and the subsef.2x of the powerset ofX, together, determing” and f. So our goal
is to transfer them from the topds of sets to the topod through the geometric morphism Consider the object
g* X of Y and the subobjeat* £, of the object(©2y)? X of subobjects of* X ; unfortunately, it is not always true
thatg* f.Qx is closed under arbitrary unions, but we can take the closure in question,@alhit say. We can now
define the topo< of sheave9/-sheaves og* X for the topology2x y: an object ofZ is a datum consisting of an
objectZ of J and an arrowZ — Qx y, together with restriction data (technically, an arrdw< . ,, Z — Z where
A — Qx y is the subobject o&‘lg(,y—equipped with the second projection — that is the graph of the relatioh
inclusion) that satisfies all the usual conditions for being a sheaf, which we won't bother to write down because they're
such a pain. This topag, if my intuition isn’t to wrong, should be (up to equivalence) the (two-)fiber product of
and) overS.

Even more specifically, suppose still thais the topos of sets andl the topos of sheaves on some topological
spaceX, but also thafy is the topos of sheaves on some topological spac&heng* X is the constant sheaf dn
with value X, andg* f,.Q)x is the constant sheaf dri with value the setf.Q2x of open sets ofX: each section of
the latter (on an open sét of Y, say) can be viewed as a subsheafdf(restricted to the open sét in question).

The completior2x y of g* f.Qx is the sheaf orY” whose sections on an open $ebf Y are open sets ok x U.
So it is reasonably clear that the topfs= X xs ) is (equivalent to) the topos of sheaves on the topological space
Z = X x Y. This is rather reassuring.

It would be nice to have a definition of a topological space object in a topos, in order to be able to stgt&’that
equipped with the completidi x y of ¢* f.Qx, is such an object. The following looks tempting: a topological space
object in a topod is an objectF of 7 together with a subobject of the powerset objget)” of E that is closed
under finite intersections and arbitrary unions (and hence contains the empty and full subohjgctButf are there
perhaps unforeseen difficulties (for example in the notion of “finite intersections”)? This needs to be more carefully
verified.

Now more generally, iff: ¥ — S andg: Y — S are arbitrary geometric morphisms between arbitrary topoi,
we can attempt to construct the (2-)fiber product as follows. First, using a folkloric theorem, we can factor (in an
essentially unique wayj andg as a surjection followed by an embedding; it is then sufficient to construct the fiber
product in the case whergandg are both surjections (that ig; andg* are faithful), or both embeddings (that &,
andg, are fully faithful). In the case where they are both surjections, we kotw be (equivalent to) the category
of codlgebras on a left-exact intarnal comonadi(see2002-03-12:03% and it is then probably not too difficult to
transfer the comonad in question frarto Y usingg, and the topos of coédlgebra on the internal comonad in question
in Y should be the desired fiber product. In the case wlienedg are both embeddings, thehand) are (equivalent
to) the topoi of sheaves on Lawvere-Tierney topologigsand jy, on S (see2002-12-05:05) then although it is
probably not the case thgk o jy is a Lawvere-Tierney topology, the upper bound g o jy)°* for all k € N is
probably well-defined ans certainly a Lawvere-Tierney topology, whose topos of sheaves should then be the desired
fiber product.

36



2002-12-21:054

A wee bit of intuitionist mathematics.

First, concerning terminology, we say that the logib@®lean(i.e. classical) iff(——p) = p holds for everyp,
or, equivalently, iffp V —p holds for everyp. We naturally always have —- ——p; even if the converse holds, that is
(——p) = p for somep, we cannot conclude thatv —p holds forthat p; on the other hand, § Vv —p then certainly
(=—p) = p. We also havé—p) <= (——-p) for all p, but(-p) v (—=—p) does not hold in general. To assume that
(—=p) V (——p) holds for allp is weaker than to assume that —p hold for all p: in the latter case, the logic is boolean;
in the former, we shall say that it gaiasi-booleanWe have remained vague as to what “the logic” means. These terms
can apply, for example, to a Heyting algebra, such as the complete internal Heyting algebra of truth values in a topos,
or (a direct image of the former) the complete Heyting algebra of open sets in a topological space. In this particular
case, the logic is boolean exactly when every open set is closed (a very strong condition, which, even in presence of
very mild separation axioms, implies that the space is discrete), or, equivalently, that every open set is regular; now, to
say that the logic is quasi-boolean just means that the closure of an open set is open, or, in other words, that the space
is “extremally disconnected”.

Beyond the empty set (or simply0) and the singletor, we have a very important s€f the set of truth values,
which is the powerse® (1) of the singleton. More generally, for every sub&stC E (technically, equivalence class
of monomorphisms, i.e. injective functions) we have a characteristic fungti@h —  such thatE’ is precisely
the set ofz € E such thaty(x) = true. Thatis,Q is endowed with an elemertue, or, more precisely, a map
true:1 — €, and every injectionE’ — E is the pullback oftrue:1 — Q by a uniquex: E —  which is the
characteristic function of (the image of) the injection. The unique fundctien 1 (the empty subset of the singleton)
defines another map— (2, that is, another element 6, which is calledfalse. Since—(true = false), the two maps
1 — Q given bytrue andfalse define a ma — € (where2 = 1 + 1 is the disjoint union of two singletons, i.e. the
set with two elements) that is (always) an injection, and that is a surjection exactly when the logic is boolean.

If E is any set, the diagond# — EZ, which is always injective (and thus defines a subsdfdfhas a charac-
teristic functionE? — Q which is calledequality A setE is said to haveat most oneelement iff the image of the
equality functionE? — ( falls in the singleton ofrue: this is trivially equivalent to saying that the unique function
E — 1lisinjective, SOF is a subset of the singleton. More generally, let us say that & sepreciseiff the image of
the equality functionE? —  falls in the doubletor2 —  of true andfalse (we have already pointed out that this
arrow is injective). InQ2 we havep equal to (the truth value of) = true for all p (this means that the characteristic
functionQ2 — Q of true: 1 — Q is the identity); and we defineot(p) to be (the truth value of) = false (again, we
definenot: Q) — () to be the caharacteristic function of the singlefaise: 1 — ); we defineand: Q% — Q to be
the characteristic function dftrue, true): 1 — Q; and we defing —> ¢, orp < ¢ (in , for all p, ¢ € Q: that is,
we are defining an arrof2> — ) to mean(p A ¢) = p. As for constructing ther: Q2 — Q arrow, the following
should work: take the arroR® —  given by(p, ¢,7) — (p = ) A (¢ = r), which gives an arrov: Q% — Q
by abstracting the third-} variable, and consider the constant functiof? — Qf? with value the identity function
Q — Q (seen as a singletan— Q): the value ofh = i: Q> — Q (that is, composéh, i) with the equality relation
(Q9)? — Q) is precisely the desiredr: Q> — Q; it can also be defined as the characteristic function of the image of
the morphisn® x 2 — Q2 which send® € Q to (p, true) for the first component and t@rue, p) for the second—the
problem with this definition is that it requires “the image” of a non injective function to be known (in a topos, this
comes logically later, so it would be begging the question). But let us abandon such logical subtleties and any pretense
at distinguishing, for example, V ¢ (the logical statement) fromr(p, ¢) (its semantic interpretation, an element of
Q). Anyway, a sett is precise iff for allz,y € £ we haver =y VvV -~z = y.

2003-10-18:055
The answer to the “am | just being utterly naive” questio2®01-12-18:011s “yes”: there are true statements
in N which are not decidable iRA>° (the system obtained by Gédelizing Peano’s axioms to the point where they
cannot be Gddelized any further). Indeed, by inductiorvame see thaZF provides a model oPA“, hence proves
Consis(PA“), soZF is stronger thai?A>°. But everZF does not settle all arithmetic questions (even though it proves
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Consis(PA), Consis(PA') and so on): for example, it does not sefflensis(ZF), so in particulaPA> does not.
This means thaPA*° is not complete.

But is this reasoning correctPhe induction is dubious at transfinite the problem being that the way induction
breaks down, and how far it can go (the smallest countable ordinal that cannot be defined by a recursive well-order on
N, perhaps? or by one that is definable in the language of arithmetic?) is very unclear.

2003-10-18:056

Peano’s axiom®A can be defined with no particular difficulty in intuitionist logic. We can define a Godel
statement in the language dPA stating that ¢ is not a theorem oA using classical logic”, and a Godel statement
G in the same langage stating that fs not a theorem aPA using classical logic”.

Now G is not a theorem oPA (if PA is classically consistent, which we assume) in classical logic (for if it were
so, thenGG would be true inN, hence unprovable, a contradiction), so it is also certainly not the case in intuitionist
logic; now this fact can be proven, with this very argument, withix even using intuitionist logic, except for the
assumption thaPA is classically consistent, sa'is not a theorem oPA using classical logic”, i.eG itself, is a
consequence dPA A Consis(PA) even using intuitionist logic. And certainkyG is not a theorem oPA (using
classical logic, and posterioriusing intuitionist logic) ifPA is classically consistent, and this fact is provable within
PA even using intuitionist logic.

ConcerningG we can sax_t\hgﬁ‘ is not a theorem oPA using intuitionist logic, providecPAMtuitionisti—
cally consistent (we write thi§'onsis PA), and similarly for-G. So@ is a consequence @A A Consis PA using
intuitionist logic.

Questions: is7 v -G a consequence @fA using intuitionist logic? 197 a consequence dfA using classical
logic?

My ideas on the subject are still very fuzzy.

2003-10-18:057

(Herek is an arbitrary (commutative) ring.) We calle] = k[t]/(t?) the ring of “dual numbers” (a horrible
terminology), and of course for any (commutatikelgebrad we letAle] = A[t]/(t?) = A ®y, kle].

If X is a sheaf (for some reasonable topology) on the cateddf$cm; of affine k-schemes (se2002-03-
24:039 and 2001-12-21:013%or some background), we call X the sheaf taking a commutativealgebraA to
(TX)(A) = X(A[e]) (and morphisms in the obvious way): this is actually?ec*(s], where the exponent denotes an
internal Hom in the category of sheaves (over affirechemes). We call' X the (total) tangent bundl¢o X .

If X is an algebraic affink-scheme, thatisX = Spec(k[t1,...,t.]/(f1,..., fr)) Wherefy, ..., f,. arerelations
on the variables,, . . ., t,, thenT X is again of this kind, and can explicitely be describe@as = Spec(k[t1, . . . , tn,

eoosthl/(fas -0 frydfa, .- dfy)) wheredf; is the (formal) total differential of;, namelydf; = ngit’l +-- 4

ngit;. Indeed,X represents the functor takingkaalgebraA to the set ofn-tuples(z, ..., x,) of elements ofd
satisfying the relationg,, . . ., f,; andT X is the set ofi-tuples of elements ol [¢], seen a$z| +ca, ..., z, +ex))

with zq,...,2,,21,...,2, in A, satisfying the same relations, which gives us the stated relations,on. , z,,

x4, ..., 2. Actually, mutatis mutandighis still holds for an arbitrary (not necessarily finite) family of generators and
relations (and in particulaf; X is affine wheneveKX is affine).

Taking X to T'X is functorial inX: if Y — X is a morphism of sheaves, then we get a morphi&h— T'X
which on a giverk-algebraA is seen as the map(Als]) — X (A[e]) given by the original morphisr™ — X (this
is also clear if we se@ X asXSpecklel,

Now whenX is (representable by) an (affiné}schemewe have more: thei X has a natural structure as a1
module bundle oveX (whereZ = Spec k|t]); in other words, there are morphisms of identy— 7'X, of addition
TX xxTX — TX,and of scalar multiplicatiot? x spe. s X — T'X, all defined overX, which satisfy the obvious
diagrams. Actually, identity and scalar multiplication can be defined in full generality: ideXitity T'X over ak-

algebraA is the mapX (A) — X (A[e]) taking an element € X (A) to its inverse image by the arrod[s] — A
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which sendg to zero; scalar multiplicatio®? x TX — TX over ak-algebrad is the mapA x X (Ale]) — X (Ae])
taking a scalah € A and an element € X (A[e]) to the inverse image af by the arrowA[s] — A[e] which sends
€ to Ae. However, there is no way to define additi@iX x x 7X — TX in full generality: if we try to define a
morphismX (Ale]) x x(a) X (A[e]) — X (A[e]) canonically inA, we have no idea what to do given two elements of
X (Ale]) whose images itX (A) (by the inverse image byt — Ale]) coincide; now ifX is actually an affine scheme,
then X (Ale]) x x(a) X (A[e]) = X (A[n, ¢]) whereA[n, (] = Aly, z]/(y*, yz, z%) (this follows from the description
given above of X whenX is affine), and then we can use the arrdf¢] — A[n, ¢] sending: ton + .

Now for the usual topologies on the category of affinechemes (e.qg., fp[qc]), there exist shea¥esuch that
X (Ale]) x x(a) X (Ale]) does not coincide wittX (A[n, ¢]): this means that for suck the tangent bundl& X — X
cannot naturally acquire a®-module bundle structure. This is most unfortunate. This hints that it would make much
sense to look for topologies for which the two arrdSyssc Ale] = Spec A[n, ¢] sending on the one hangto ¢ and
¢ to 0 and on the other hanglto 0 and( to e, would be a covering. Question: is there a natural way to define a
topology that would allow such a coveringniong many othersaturally)? So thal’X — X would naturally have
an Z-module bundle structure for any she#ffor that topology (with, of course, the arroWs” — T'X deduced
fromY — X by functoriality, being morphisms)—among other properties. Note for further thoughts: what about the
canonicaltopology?

2003-10-26:058

To answer a question asked (more or less implicitly2@93-10-18:057the arrowSpec k[e1] W Spec k[ea] —
Spec k[n, ¢] (wherekle;] = k[x]/(z?) andk[n, (] = kly, 2]/ (v?, yz, 2?)) given byk[n, (] — kl[e1] x k[e2] taking
n to (¢1,0) and( to (0,e2) is not a covering for the canonical topology (or, consequently, for any “reasonable”)
topology on the category of affifreschemes. Indeed consider its pullbackSpgec k[0] — Spec k[n, ¢] (where again
k[6] = K[t]/(t?)) given byk[n, (] — k[d] taking bothn and( to 5. Now we can describé[n, (]-algebras as data
consisting of a-algebraA together with two elements andv of A such thaw? = uv = v? = 0; tensoring such
an algebra wittk[e1] x k[e2] gives the direct produgtd/(u)) x (A/(v)) of the quotientsA/(u) and A/(v); so if A
is k[6] with w = v = & as proposed, then that tensor is jiask k, and sinceSpec k — Spec k[e] is certainly not a
covering, we lose.

To summarize, in the category of affikeschemes, the arrofipec k[e1] W Spec k[e2] — Spec k[n, (] is an effec-
tive epimorphism, but not aniversaleffective epimorphism (i.e., covering for the canonical topology). What happens
if we try to consider sheavek such thatX(V xy V) = X (V) — X (U) is exact for all effective epimorphisms
V' — U rather than just universal effective epimorphisms? Do we get something nasty (I imagine the resulting cate-
gory of suchX is not a topos)? Certainly all representallieare of this kind (and perhaps even lschemesX ?).
Uh...

2003-10-26:059

Letp be a prime. The Teichmuller map is a morphims of groygds; — Z such that)(z) = z. Extend it to
n:F, — Z, by taking0 to 0. Unfortunately this is not additive, but it is at least multiplicativézy) = n(z)n(g).

Now any element of Q < can be uniquely written(zo)p¥*) (1+p)®(x) wherev(z) is of course the valuation of
x andz, € F) is the reduction mog of p~v@z, anda(x) € Z,. This describe§),’ as isomorphic t& 5 x Z x Z,.
Define a symbok: Q, — Q, by letting 4. = n(zo) [v(2) + (v(z) + H a( )) ] p V@=L (1 4 p)a@=1forz £ 0
andd 9 = 0; here,H € Qp |s some constant of definition (“fiddle factor'®] = C}“’ This symbol is not additive,
but it satlsfles‘i—(my) =gz =2 d + y forall z,y € Q,. Perhapd? = 1 is the most natural choice—and perhaps not.

It does notseempossﬁle (even by fiddling with the value &éf) to obtain the most naive Taylor formula (for

x € Zy)
P B d* 1 d*2 d*3 3
z=n(Z)+n prsd LRk b P’ +6n il A
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—but note that the formuls valid modp? so long asH is 1 modp. Sincen(t) is notn(t) and neither is‘%(%t)
equal to%(%t), there are dozens of ways the formula could be (less “naively”) written: is it perhaps true that for an
intelligently choserff and an intelligent way of writing the formula, we have a positive result not justpi@d
Another natural question: how about demanding that the ima@hyfj—; falls in Q (seen withinQ,, naturally),
or perhaps at least the algebraic closur@oh Q,,?

2003-11-18:060
What difficulties do we encounter in trying to construct relativistic quantum field theory in the most naive way
possible? Assume, say, we wish to perform second quantization of a real self- mteractlng scad%aseﬁﬁ@/mg the

field equation(d* + m?)¢ + a¢® = 0 (here,0? is the Dalembertian given biy? = 2 — 2 — 3872 — 8‘;, and
a > 0is a self-interaction parameter), which comes from a Lagrangian defisity g 22 94, 1in2¢2 — Lagt:

if not too much nonsense lies behind variational equations at the core, then the field equation should state exactly the
fact thate is such that/ £ d*z is extremal (make mathematical sense out of this!); or sheudd constrained so that
[ dix =17
Now basically we would like to construct a Very Large (Indeed) Hilbert space of functions having one vggiable
for each space-time poimt Then the world state is determined by a unitary vedtor this space, and for eaah) ¢(x)
becomes a linear opera@e e + a? ) on acting on® (probably highly unbounded): note that(z) = - (fm —
(assummg the space is any bit sane, which, of course, is a very dangerous assumptiony &o) th%(’ry
qﬁ = §(x — y) for some meaning of and up to some normalization. (This is a lot of hand-waving, now, of
course.) The vacuum state would pfg, e~ 3, assuming there were a way for this product to make sense (probably
by defining all other functions somehow with respect to this one). Now can we make something of the Lagrangian
variational principle? Is there some way to make the whole thing a little more meaningful on mathematical grounds
(’'m not asking for a solution to relativistic QFT, of course, merely a way to state the problem).

2003-11-18:061

A typical independence result in the absence of Choice: it is consistent that there exists an infinite set of reals
without a(n infinite) countable subset. How do we do this?

As a forcing condition we take the partially ordered $eof finite functionsw? — 2, partially ordered by
inclusion (that isp < ¢, or “p is stronger thar” iff p O ¢ as a finite set of pairs). Embde in the boolean algebra
B of regular open sets ar’ (with the product topology) by takingto the clopen (and hence regular open!)<eb
consisting of all functions’? — 2 which extendp: evidently this embed#® as a dense subsetBf\ {o} (the clopen
sets in question form a basis for the topologthif). For commodity we will writeT and _L for the maximal and
minimal elements oB. We construct the boolean-valued mo#fét as usual. For. € w we letz,, be the name which
takes anyk € w (or rather, the canonical namgfor k) to the truth valug{(n, k,1)} € P: thus{(n,k, 1)} I k € x,,
(and, of course{(n,k,0)} I+ k ¢ x,). After quotienting by a generic ultrafilter, the, determine a sequence of
generic reals (it is, of course, equivalent to define a single generic reakssaguence of such, sineé can be put
n “canonical” bijection withw; the point of using a sequence appears when we start introducing permutation groups).

Now consider the groufy = &(w) of bijectionsw — w (which acts onv by o - n = o(n)). MakeG act on
Bbyo-u={fw? — 2:((nk)— (f(e(n)),k)) € u} (and onP by o - {(n,k,v)} = {(c(n), k,v)} so that
o -e(p) = e(o - p)). Defines? the set of subgroups @ which contain the fixator subgroup of a finite subset of
w: then 7 is a normal subgroup. As usual, we say that an elemeit isf.7#-symmetric, or simply, symmetric,
when its stabilizer is iv7. And similarly for an element of B (more, precisely, a name); and we define hereditarily
symmetric names in the obvious manner. Evidentlyhas a symmetric (and therefore hereditarily symmetric) name:
its stabilizer is the set af € & which fixn (and more generally - x,, = x,(,)). The nameX, which takese,, to T
for all n, is also symmetric (and hence hereditarily symmetric). And «,,, # «,, for all m # n because below any
forcing condition it is possible to forcé ¢ x,,, and?¢ € x,, for somel € w. ThereforeX is infinite (in the generic
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ultrafilter quotient, or simply in the boolean-valued model in the sense that the truth valXeisfifinite” is T), so
it is also in the symmetric model.

Now assume there exists some hereditarily symmetric naraad some forcing conditiop, € P such that
po forces ‘h is an injectionn — X". Let F be a finite subset ab such that the fixator oy stabilizesh. Since
po forces “the image oh is not contained ifx,,:n € E}” (note that this makes sense sinEeis finite), there is
p < po,t € wandn ¢ E such thap IF k(i) = x,,. Now findo € G such that fixesE, o - p is compatible withp
ando(n) = n’ # n (it suffices to take for the permutation which exchangesvith somen’ greater than anything
mentioned inE or p): then ifg = pU (¢ - p) is the conjunction op ando - p (which makes sense sinpeando - p are
compatible), we see that+ h(i) = «,, andq I+ h(i) = x,, # x,, a contradiction.

Therefore, in the symmetric modeX, although an infinite set of reals, has no (infinite) countable subset.

It is instructive to see what happens if we try to show that (in the symmetric m&deBnnot be totally ordered
(an absurdity, since it is a set of reals, so it has a canonical total order!): we take a hereditarily symmetti@andme
some forcing conditiopy € P such thaty, forces ‘¢ is a total order onX”. Again, let E be a finite subset @b such
that the fixator ofF’ stabilizest. Then findp < pg andm,n ¢ E such thap I+ (x,,,x,) € t. Only, this time: ifo
is the permutation which exchangesandn, there is no reason thatando - p should be compatible; and if we seek
a permutationr such thatp ando - p are compatible, we can exchangewith some larger’ or n with some larger
n/, but there is no reason why we should be able to exchangadn (so as to get a contradiction). In fact, Lévy has
shown that every set can be totally ordered in this model. We can get a set that cannot be totally ordered, however, by
considering a set of sets of reals (this is classical).

2003-11-30:062
Recall that the probability distribution function of a Gaussian variable with ndeamd standard deviatiohis

1 ,—z%/2
—F—¢€ .

2

"If X and X’ are independent Gaussian variables with méarand standard deviatiorl, then the
expectation ofmax(X, X’) is —= (accordmg to Mathematica, or an easy computation), which is approximately

0. 56418958354775628694807945 The expectation of the maximum dfiree independent such variables QL&
(according to Mathematica), or approximat@ly4628437532163443042211918. However, the expectation of the
maximum offour independent variables does not appear to be expressible in a simple form (at least, it is almost
certainly not a rational over square root of pi, and it is also unknown to the Plouffe inverter); an approximate
value is1.0293753730039641320569866. Similarly for five independent variables in which case the value is close

t0 1.1629644736405196127722680.

Now consider the game where a player, whose goal is to maximize his score, must choose between two inde-
pendent Gaussian variables with ménand standard deviatioh but only the value of the first variable is known
when the choice must be made. That is, the player must choose between k&efirmgpse value is then known)
and takingX’ (whose value is unknown). Evidently (?), the optimal strategy consists of keépwhen its value
exceeds the expected value f6f, which is0: that is, takeX when it is positive, otherwise tak&’. If this strategy is
followed, the expected score%:ﬂ (because the expectation of a Gaussian variable of ithead standard deviation

1 subject to the condition that it be positive\i/tg). This is approximately).39894228040143267793994606. Next,
suppose the player has three chances instead of just two: he is shown a first Gaussiaki vahgecan choose to

stop here or move on to a second oi¥é, which he can either keep or take the thi¥d, which he then cannot reject.
Then his optimal strategy is to keep the first variab{g,just in case its value excee , otherwise demand to

see the second”, and choose that when its value is positive. The expectation for the final score is approximately
0.62974579055999158292799866.

Another interesting procedure in this line of thought is the followgragne of appeal This time, there are two
players, the goal of the first player (the plaintiff) being to maximize the final score (damages) whereas the goal of the
second player (the defendant) is to minimize it. A first Gaussian varidbtd mean0 and standard deviatiohis
dealt (the first hearing). After this, the plaintiff may choose to appeal or not: if he does, another variaklih
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the same distribution and independent’f is dealt. Whether or not the plaintiff has appealed, the defendant may
then choose to appeal: if he does, another variableof X"/, whichever it may be) is taken, again independent of the
previous one(s) and with identical distribution. Lastly, if the defendant has appealed but the plaintiff has not appealed
yet, the latter may appeal, which gives a third variallé The last chosen variable is the final score. Then the optimal
strategy for both players is as follows: plaintiff appeals if the first scoiie less than- \/L (because appealing puts

the defendant in the position of getting two chances, whereby by the previous analysis his best expec—ta\%e:r) is

whereas defendant appeals if the first sc8rés at greater thaPﬁ (Actually, this is apetitio principii, and this

should be checked: but it seems that this is indeed the best possmle strategy for both players.) A computauon (largely
done in Mathematica, but not too hard by hand either) shows that the variance of the overall $ceré45— or
approximately0.70603876009582322907036928: that this is less thai is satisfactory, since the whole p0|nt behind

the appeals process is to make the system more “just” (i.e. as close as possible to the id€d] aaldi¢he score’s
expectation is of course zero. Incidentally, the expected number of trial hearings (variables dealt in the whole process)
isi(5— 3erf(ﬁ)), numerically barely more than two.

Now consider the same questions but changing the distribution to a uniformly distributed variable bet(&en
and+/3 (so that it also has expectatiorand variance). Then the expectation of the max of two independent such
variables is§\/§ — this is better than in the Gaussian case. For three variable%it/@, for four it is % 3 and for
five itis 221/3. Playing the game of maximizing the score, with only two chances, gives an score expect%t{éil of
— again better than the Gaussian case. With three cha%%e@,— still better than for Gaussian (but we know that
in the limit it will get worse, since in the Gaussian case the limit for infinitely many trials must tend to infinity whereas
here it isv/3). In the appeals game, the variance of the overall sco%% @ 0.765625 (and the expected number of
hearings isy’).

Fascmatlng.

2003-11-30:063

A clarification (thanks to Joél Riou for some remarks on this). 1.éf — P~ be a closed immersion, and
<% = i*0(1) the very ample invertible sheaf associated to the situation. We saythatthe sheaf of “hyperplane
sections” ofX embedded iV throughi, but thisdoes not meathat every global section o is indeed determined
by a hyperplane if?¥: that is, the canonical maf®(P", (1)) — H°(X,.#) need not be surjective.

Here is an example: consider the map? — P* taking (T : T} : 1) to (T2 : 2ToTh : 17 + 2Ty T : 2T4 T -
T3) (this is a form of the Veronese embedding). Th&h= i*¢/(1) is the shea®’(2) on P? of (all) homogeneous
polynomials of degree in Ty, Ty, T», so for exampld? — 27,15 is a global section af” on P2, whereas it is not a
hyperplane section in the naive sense: the imagedfyhe plane conid@? — 27,T» = 0 is a (rational) quartic curve
in P* which is not contained in any hyperplane.

Let us examine the previous example in a little more detail and explaynin fact, T2 —27,T» € T'(P?,i*0(1)).
First of all we have the sheaf ' &/(1), which is a sheaf ofibelian groupgor k-vector spaces; being the base field)
onP2, not of &p.-modules, namely the inverse imager@f: (1) by i as a sheaf of abelian groups {ewector spaces);
this is actually a sheaf of modules oviér’p. (a sheaf of rings); to defing (1) we must then tensar ' &'(1) with
Op2 OVeri* Ops. Now T2 — 21Ty is notinT'(P2,i~1¢(1)). Nor can it be written as the tensor product of tglobal
sections of ~1&(1) and Ops. However on each of the open s&ts+# 0, T} # 0 andT; # 02 we can define a section
of i*&/(1), respectively by[§ @ (1 —222), (T} + 2T Ty) — 4(ToTh) @ () andTs @ (% —242): these sections
glue correctly on intersections, hence defme a global sectiohvafl).

Reverting to a more general picture, 1&t be any invertible sheaf on a proper (integral) varidty Given any
non-zero global sections, ..., sy of .Z on X, we can define a rational map X --» PV by takingz of X to
(so(z) : -+ : sn(x)) (which makes sense up to scalar, exactly what we need), provided notsgll.of , s vanish
atx. This is defined as a morphism provided thenever all vanish simultaneously: this means exactly thatthe
generate? in the sense that the obvious morphm‘é}wrl — £ is an epimorphism (as a morphism of sheaves of
Ox-modules). Moreoverp is a closed immersion when it separates points and tangent vectors: this means (well, at
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least forX smooth...) thaty is injective and that its differential is injective everywhere. The latter condition means
that the matrix of partial differentials &f (with respect to some local system of parameters) is of rank the dimension
of X plus one (the “plus one” comes from the fact that the direction coline@i{@), . . ., sy (x)) is lost).

Of course, we can consider for thea k-basis of all global sections of. We then say that” is generated by
its global sections when for all of X there is as € I'( X, .¥) which does not vanish at so.# defines a morphism
X — P(I'(X, %)) (and more generally any invertible she#&f having at least one non-zero global section defines
arationalX --» P(T'(X,.%))); then.# is very ample precisely when this morphism is a closed immersion. Note
however, as seen above, that ihist truethat any morphism fronX to projective space is of this form; sometimes
the target projective might be smaller (but certainly it can be written as the composition of such a morphism by a
P(T'(X,.#)) --» PN which happens to be defined on all the imagexof

Some lines of further thought:

¢ Find an (illuminating) example of & which has non-zero global sections but is not generated by them.

e The global sectiongy Ty, TyTz, To Ty, T, TZ of Op=(2) do not generate the latter; but wtdd they generate?

l.e., what is the image of the morphism of shea¥&s — ¢%=(2) which they define? The rational map is a
closed immersion of the blowup &F at (0 : 0 : 1) within P4.

e Let ¥ be an invertible sheaf o generated by its global sections: what can be said abaettor subspaces
E C I'(X,.%) such thatE generates?? (From the point of view of their combinatorial structure.) Same
guestion, assuming’ is very ample, about thosg for which additionally the morphism thus defined is a closed
immersion?

e What about rational maps? Can we give sense to them being a closed immersion of some kind? (Of course, it
makes sense to ask for the map to be generically a closed immersion: can we demand more, something which
would generalize being a closed immersion in the case of morphisms?) Whatis a “large” (or is it “big”?) invertible
sheaf?

2003-12-06:064

Let us correc001-12-15:00%nd try to get the correct definition of the projective space functor once and for
all.

Let £ be any (commutative) ring.

If n > 0, the projectiven-space functor ovek is the (covariant) functor from the category/ofilgebras to the
category of sets which takescaalgebraA to the sef””(A) defined as follows. Consider daté, . . ., f,,) € A™ (for
somem) such that thef; generate the unit ideal id and, for eacly, data(z; o, ..., z; ) with eachz; ; belonging
to the localizationd, of A which invertsf;, such tha(z; ;); generates the unit ideal &f, for all j and for allj, j/
the two families(z;;); and(z;: ;); seeninAy, s , (by the obvious canonical maps) coincide up to multiplication by a
unit (which depends op j* but not ong); and identify two such daté f;), (x;:)) and((gx), (yx,;)) when their union
is a data satisfying the same conditions, in other words when for gédihe two families(z; ;); and(y;,;); seenin
Ay, g, coincide up to multiplication by a unit; then the set of such data with such identifications is precisely what we
callP*(A). If ¢: A — B is a morphism of-algebra, we defin®”(y) by taking data((f;), (z;:)) as above to the
obvious imagé (¢ (f;)), (¢(x;,))) (recall that localization is functorial, which lets us define:; ;)). We can actually
simplify the above definition slightly by observing that multiplying thg, by some power of; (depending only on
j and not or¥) we can assume that they are alldn

Now rather than consider data; o, .. ., z; ) we can consider the kernel of the linear formAﬂJiJ;rl given by
(&o,.-.:&n) — x0é0 + -+ + xj0&,. It should be possible to see why these kernels determine the data up to the
prescribed equivalence relations, nor why it is possible to find a glEbal A»+! which determines all the kernels
in question by specialization. (This all shouldn’t be difficult: for example, one important ingredient is that modules
descend correctly — a family of modul@$; over theA, with compatibility isomorphisms satisfying the nice cocycle
condition determines a modulé over A.) So the point is thaP™ (A) is the set of subd-modulesH of A™** such that
A™*1/H is locally free of rankl in the sense that for sonyg, . .., f,, generating the unit ideal idl the localizations
inverting thef; are all free of rank.
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“Locally free” does not mean “free” (even over a ring — affine scheme — that is). The canonical example is to
take A = Z[\/-5], and for H the subA-module of A% generated by2,1 + +/=5) and (1 — /=5, 3): thenA?/H
(which consists of the classes of elements of the f@iny) and(1, ), and can be identified with the ideal generated
by 2 and1 + /=5 by taking(z,y) € A2to (1 + /=5)z — 2y) is locally free of ranki (it is free, say, after inverting
2 or 3), but not free.

More generally, ifE' is ak-module, we can definB(F) to be the functor taking A-algebraA to the sefP(E)(A)
of sub-A-modulesF’ of E ®; A such thal E @, A)/F is locally free of rankl.

Note: for finitely presented modules, “locally free” and “projective” are synonymous.

2003-12-07:065

Some quick notes about intuitionist logic (also 2002-12-21:05%

For all natural numberg andb we have(a < b) V (a = b) V (a > b). This is proved by induction (for example,
by induction onn it is easy to provén = 0) V (n > 1), wheren > 1 means that is the successor of some natural
number). Therefore the same statements holds for all integers, and for all rationals. Again: a rational number is either
zero, or non-zero (in which case it is invertible). In topos semantics, the object of rationals is represented by the
constant sheaf with valu@, with the obvious addition and multiplication.
A real number can be defined as a pdit R) of sets of rationals, such that:
If r € Rands > rthens € R;if r € L ands < rthens € L.
If € R then there exists < r such thats € R; if » € L then there exists > r such thats € L.
There exists: € R; there exists € L.
There does not existsuch that € R andr N L (thatis,RN L = @).

e If r > sthen either € Rors € L.

In the topos of sheaves over a topological sp&céhe object of real numbers is represented by the sheaf of continuous
functions toR with the usual topology.

The reals form (with the straightforward addition and multiplication) a ring containing the rationals (and even a
local ring in the sense that for all realeitherz or 1 — x is invertible). We can define order relations as follows: let
x > 0when0 € R and letz > 0 whenr > 0 for all » € R (which is exactly equivalent to requiring > 0 for
all » € R), and extend these by translation. Let) y whenz > y or x < y: thenxz { 0 means exactly that is
invertible. Note that ifr < y are reals then there exists a rationauch thatr < r < y. However,z < y does not
mean the same d3 = y) V (z < y), which is probably not surprising, but even< y does not mean the same as
(z < y) A—(x = y), which is perhaps a bit more surprising, ane y is stronger tham(xz = y). Itis not true that
for all realz andy we have(x < y) V (z > y); however, for all reak > 0 itis true that(x < y + h) V (z + h > y).

It is true that for realr, if -—(z = 0) thenz = 0. Indeed,x = 0 is equivalent to-h < = < h for all rational
h > 0 (this is easy to check on the cuts, because fak all 0 we must have eithex < h or z > 0); now if » > 0 and
—-—(z = 0) then we must have-h < = < h (again because either< h or z > 0 and the latter is impossible). Even
stronger:—(x ¢ 0) impliesz = 0.

It would be naive to hope that a non-empty (in the sense “having an element”) bounded set of rationals should
always have a least upper bound and a greatest lower bound in the reals, and it would be naive to hope that a continuous

real function (“continuous” in the ordinarye3§ sense)f such thatf(—1) = —1 and f(1) = 1 should cancel
somewhere. We can easily give examples in the topos of sheaveXovef—1;1]. For a set of rationals with no
lower bound defing(r) = X if 0 < r < 1 andx(r) = [-1;0[if =1 < r <0, x(r) = @ in all other cases: with

the obvious abuse of language, this defines the characteristic function of a Eubkéte internal rational interval
] — 1; 1], andU is even open (in the sense that forialk U there existg > 0 such thalr — h;r + h[C U), contains
]0; 1], but does not havea a real lower bound. For a continuous and even monotone function as stai&d, take
for ¢ € X = [—1;1] and real, so thatF' is continuousF'(¢, -) monotone nondecreasing for gllandF'(¢,z) = 0
exactly wher¢ < 0 andz = —1,0r¢ > 0andz = 1, or¢ = 0 and—1 < « < 1: certainly we can find such, and
internally it defines a continuous function on the reals, nondecreasing (in the sensethamplies F'(z) < F(y))
but for which it is not true thaliz(F(z) = 0).
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On the other hand it is true that for every continuous increasing function (in the sense thay implies
F(z) < F(y))with F(—1) = 1 andF'(1) = 1 there exists & with F'(z) = 0.

Note that ifzy, .. ., x; are real numbers (herk,is a naive natural number), they have a well-defined least upper
bound and greatest lower bound. In particulaf,= sup(x, —z) is well-defined, and: > 0 is equivalent tdz| = «;
andz ¢ 0is equivalent tdz| > 0. Note thatz — || is definitely not differentiable &i: there exists nd such that

for all e > 0 there exist$ > 0 satisfying0 < |h| < 6 = % —¢| < . So while it cannot be proved that there
, it can be proved that there exists one which is not

exists a discontinuous real function (Brouwer’s famous theorem
differentiable: this also means that the line object of synthetic differential geometry is not the real numbers object in
any sense.

2003-12-07:066

Some more intuitionist mathematics (s2@02-12-21:054nd possib2003-12-07:06h

Need to check the following.

If X is a set, we can define the s€tof P C X such thatvzVy(z € PAy € P = 2 = y) and——(P = @)

(that is, ~Vz—(z € P)). Define an equivalence relation o by P ~ Q iff ——(P = @), and letX = X/ ~.
Define a mapX — X by takingz to {«}. This should be the internal vision of the construction which, in the topos
context, takes an objedf to its associated sheaf for the- topology. SaX is in many ways the “best classical object”
associated t& . It seems that ifX has some algebraic structure, th€ralso inherits that structure.

Now if R is the real numbers object, then it injectsRn(since——(z = y) impliesz = y for reals, se003-
12-07:065, and the latter is itself a ring with an order on it: it would be interesting to check what properties it has,
analogously to those @&, and perhaps see whether it is better behaved. (In the topos of sheaves over a topological
spaceX, R is represented by the sheaf of real-valued continuous functionsiense open subspt

2003-12-07:067

Still concerning intuitionist mathematics (also s202-12-21:054and possibly2003-12-07:065%nd2003-12-
07:0686.

Rumor (or folklore) has it that it is consistent that all functidfis— N are computable (recursive). How is this
done?

Note that it is not possible for all subsdisC N to be recursively enumerable: indeed, the standard diagonaliza-
tion argument works as usual (EEtbe a universal Turing machine, and Iebe the set ok such that/ (k, k) does not
terminate: if there exists such that¥ is the set of: for whichU (n, k) terminates, thetV (n, n) terminates if and only
if it does not terminate, a contradiction). But a non-r.e.I5gf all functionsN — N, cannot satisfiF U (N\ F) = N,
otherwise the function which ison E and0 onN \ E would be defined on all df whereas it is not computable.

2003-12-07:068

A very open question: we know that for all > 1 the canonical injectiof®(Q) — P™(R) has dense image.
But how do we proceed in practice (computationally, that is) to approximate apairie™(R) by a point inP"(Q)
of small height (the height being the max of the absolute values of integer homogeneous coordinates for the point in
guestion)? Fon = 1 we have Euclid’s algorithm: can it be generalized in some way?
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