- 1. Soit k un corps algébriquement clos et $\mathfrak I$ un idéal de $k[x_1,\ldots,x_n]$ qu'on pourra pour plus de simplicité supposer radical¹. On appelle $V(\mathfrak I)(k)$ (ou éventuellement $V(\mathfrak I)$ tout court) l'ensemble des n-uplets $(x_1,\ldots,x_n)\in k^n$ tels que $f(x_1,\ldots,x_n)=0$ pour tout $f\in \mathfrak I$, qu'on munit de la topologie de Zariski². Montrer qu'alors $V(\mathfrak I)(k)$ est connexe (en tant qu'espace topologique) si et seulement si l'anneau quotient $k[x_1,\ldots,x_n]/\mathfrak I$ n'a pas d'autres idempotents que 0 et 1 (c'est-à-dire que $e^2=e$ dans $k[x_1,\ldots,x_n]/\mathfrak I$ implique e=0 ou e=1).
- 2. Soit K un corps et k un sous-corps de K. On appelle famille algébriquement indépendante sur k d'éléments de K une famille $(x_i)_{i\in I}$ (on pourra se contenter d'imaginer le cas d'une famille finie) d'éléments de K telle que le morphisme naturel $\iota \colon k[(t_i)_{i\in I}] \to K$, où les t_i sont des indéterminées (c'est-à-dire que $k[(t_i)_{i\in I}]$ est l'anneau des polynômes sur les t_i), qui envoie t_i sur x_i , est injectif. Autrement dit, cela signifie qu'il n'existe pas de polynôme $P \in k[(t_i)_{i\in I}]$ tel que $P((x_i)) = 0$. (Notamment, la famille vide est algébriquement indépendante sur k, et une famille à un seul élément $x \in K$ est algébriquement indépendante sur k si et seulement si x est transcendant sur k.) Dans ces conditions, on identifiera le sous-anneau (image de ι) $k[(x_i)_{i\in I}]$ de K engendré par les x_i avec l'anneau des polynômes en les indéterminées x_i (via le morphisme ι); de plus, le corps des fractions $k((x_i)_{i\in I})$ de $k[(x_i)_{i\in I}]$ se plonge lui-aussi naturellement dans K (comme le sous-corps de K engendré par tous les x_i).
- Si $(x_i)_{i \in I}$ est une famille d'éléments de K algébriquement indépendante sur k, on dira que $(x_i)_{i \in I}$ est une base de transcendance de K sur k lorsque K est algébrique sur $k((x_i)_{i \in I})$.
- (1) Montrer que toute famille algébriquement indépendante sur k d'éléments de K se complète en une base de transcendance et que de toute famille génératrice (de K en tant que corps³) on peut extraire une base de transcendance.
- (2) Montrer que deux bases de transcendance de K sur k ont toujours le même cardinal. (Pour plus de simplicité, on pourra supposer qu'une des bases est finie.) Pour cela, on pourra montrer le lemme d'échange: si z_1, \ldots, z_m est une base de transcendance de K sur k et t un élément de K tel que z_1, \ldots, z_ℓ, t soient algébriquement indépendants sur k (pour un certain ℓ), alors il existe j entre $\ell+1$ et m tel qu'en remplaçant z_j par t dans la base de transcendance z_1, \ldots, z_m on trouve encore une base de transcendance.

Le cardinal commun des bases de transcendance de K sur k est appelé le degré de transcendance de K sur k, et noté $deg.tr_k K$. Ainsi, $deg.tr_k K = 0$ exactement lorsque K est algébrique sur k.

- **3.** Soit k un corps algébriquement clos. On considère $f_1, \ldots, f_m \in k[x_1, \ldots, x_n]$ des polynômes homogènes de degrés respectifs $d_1, \ldots, d_m > 0$ en les indéterminées x_1, \ldots, x_n . Le but de l'exercice est de montrer que si n > m alors il existe (dans k^n) un zéro commun non-trivial (c'est-à-dire différent de $(0, \ldots, 0)$) à f_1, \ldots, f_m . On suppose donc que le seul zéro commun à f_1, \ldots, f_m est $(0, \ldots, 0)$ et on va montrer $n \leq m$.
- (1) Montrer qu'il existe $r \in \mathbb{N}$ tel que tout monôme de degré (total) $\geq r$ en x_1, \ldots, x_n appartienne à l'idéal \mathfrak{I} engendré par f_1, \ldots, f_m dans $k[x_1, \ldots, x_n]$.
- (2) En déduire que tout monôme de degré (total) $\geq r$ en x_1, \ldots, x_n peut s'écrire $g(x_1, \ldots, x_n)$ où g est un polynôme de degré total < r en x_1, \ldots, x_n à coefficients dans l'anneau $A = k[f_1, \ldots, f_m]$ engendré par f_1, \ldots, f_m dans $k[x_1, \ldots, x_n]$.

⁽¹⁾ C'est-à-dire qu'il vérifie les trois propriétés suivantes dont on rappelle qu'elles sont équivalentes : (i) \Im est intersection d'idéaux premiers, (ii) si $f^n \in \Im$ pour un certain $f \in k[x_1, \ldots, x_n]$ et un $n \in \mathbb{N}$ alors $f \in \Im$, et (iii) l'anneau quotient $k[x_1, \ldots, x_n]/\Im$ est réduit (i.e., tout nilpotent est nul).

⁽²⁾ La topologie dont les fermés sont les $V(\mathfrak{J})$ pour $\mathfrak{J} \supseteq \mathfrak{I}$.

 $[\]binom{3}{2}$...ou même toute famille génératrice d'un sous-corps de K sur lequel K est algébrique...

- (3) En notant $K=k(f_1,\ldots,f_m)$ le corps des fractions de l'anneau intègre A (vu à l'intérieur de $k(x_1,\ldots,x_n)$), en déduire que $K[x_1,\ldots,x_n]$ est un K-espace vectoriel de dimension finie. Conclure que $k(x_1,\ldots,x_n)$ est un K-espace vectoriel de dimension finie.
 - (4) En utilisant les résultats de l'exercice 2, conclure que $n \leq m$.
- **4** (théorème de Tsen). Soit k un corps algébriquement clos, k(t) le corps des fractions rationnelles à une indéterminée sur k. On considère un polynôme $f \in k(t)[x_1,\ldots,x_n]$ homogène de degré d à n+1 indéterminées à coefficients dans k(t), où 0 < d < n (le degré est strictement inférieur au nombre d'indéterminées). Montrer que f a un zéro non trivial : il existe x_1,\ldots,x_n dans k(t), non tous nuls, tels que $f(x_1,\ldots,x_n)=0$. Pour cela, on supposera (quitte à chasser les dénominateurs) que les coefficients de f sont dans k[t], et on cherchera une solution (x_1,\ldots,x_n) avec $x_\ell=\sum_{j=0}^N c_{\ell,j}t^j$, où les $c_{\ell,j}$ sont à déterminer et où N est un entier suffisamment grand : en considérant alors $f(x_1,\ldots,x_n)=0$ comme un système en les $c_{\ell,j}$, on appliquera le résultat de l'exercice f
- 5. Soit k un corps, n un entier naturel, et $(x_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}$ une famille de n^2 indéterminées. On appelle Δ le déterminant de la matrice (x_{ij}) (c'est-à-dire dont le coefficient sur la i-ième ligne et j-ième colonne est l'indéterminée x_{ij}): ainsi, Δ est un élément de l'anneau $k[(x_{ij})]$ des polynômes en les n^2 indéterminées considérées.
- (1) Montrer ce polynôme est irréductible (autrement dit, si $\Delta = PQ$ avec $P, Q \in k[(x_{ij})]$, alors l'un de P et Q est constant). Pour cela, on pourra étudier le degré de P et Q par rapport à toutes les variables d'une ligne i_0 , puis d'une colonne j_0 .
- (2) Si k est algébriquement clos, montrer (sans utiliser (1)) que pour chaque $0 \le r \le n$ l'ensemble des matrices de rang $\le r$ est un fermé algébrique irréductible dans $\mathbb{M}_n(k)$ (identifié à k^{2n}) muni de sa topologie de Zariski. Pour cela, on pourra utiliser l'application $\psi : \mathbb{M}_n(k) \times \mathbb{M}_n(k) \to \mathbb{M}_n(k)$ qui envoie (a,b) sur aJb où J est une matrice judicieusement choisie.
 - (3) Quel rapport entre les questions (1) et (2)?

Motivations: L'exercice 1 est un exemple de traduction algébrique de propriétés géométriques. L'exercice 2 est à comparer avec l'introduction des bases et de la dimension pour un espace vectoriel (on peut, d'ailleurs, donner un formalisme abstrait de bases et de dimension qui recouvre ces deux situations — par exemple dans le cadre de la théorie des modèles). L'exercice 3 constitue la situation non triviale la plus simple de la théorie de la dimension : il faut imaginer la situation dans l'espace projectif \mathbb{P}^{n-1} de dimension n-1 sur k: chaque f_i découpe une hypersurface dans ce projectif, qui fait chuter la dimension de 1, mais tant qu'il y a moins de n-1 hypersurfaces l'intersection ne peut pas être vide. L'exercice 4 exprime le fait que le corps k(t) des fonctions rationnelles à une indéterminée sur un corps algébriquement clos est « C_1 » (la définition d'un corps C_1 étant précisément la conclusion de l'exercice). L'exercice 5 est un classique.