- **N.B.:** Dans les deux exercices qui suivent, on ne supposera pas connue la théorie de la dimension de Krull. On supposera cependant connue la notion de degré de transcendance d'un corps : on rappelle que $\deg. \operatorname{tr}_k K$ est le cardinal de n'importe quelle famille (x_i) d'éléments de K algébriquement indépendants sur k tels que K soit algébrique sur $k((x_i))$ (une telle famille existe et s'appelle base de transcendance de K sur k, et de toute famille d'éléments engendrant K sur k on peut extraire une base de transcendance).
- 1. Soit k un corps algébriquement clos. On considère $f_1, \ldots, f_m \in k[x_1, \ldots, x_n]$ des polynômes homogènes de degrés respectifs $d_1, \ldots, d_m > 0$ en les indéterminées x_1, \ldots, x_n . Le but de l'exercice est de montrer que si n > m alors il existe (dans k^n) un zéro commun non-trivial (c'est-à-dire différent de $(0, \ldots, 0)$) à f_1, \ldots, f_m . On suppose donc que le seul zéro commun à f_1, \ldots, f_m est $(0, \ldots, 0)$ et on va montrer $n \le m$.
- (1) Montrer qu'il existe $r \in \mathbb{N}$ tel que tout monôme de degré (total) $\geq r$ en x_1, \ldots, x_n appartienne à l'idéal \mathfrak{I} engendré par f_1, \ldots, f_m dans $k[x_1, \ldots, x_n]$.
- (2) En déduire que tout monôme de degré (total) $\geq r$ en x_1, \ldots, x_n peut s'écrire $g(x_1, \ldots, x_n)$ où g est un polynôme de degré total < r en x_1, \ldots, x_n à coefficients dans l'anneau $A = k[f_1, \ldots, f_m]$ engendré par f_1, \ldots, f_m dans $k[x_1, \ldots, x_n]$.
- (3) En notant $K = k(f_1, \ldots, f_m)$ le corps des fractions de l'anneau intègre A (vu à l'intérieur de $k(x_1, \ldots, x_n)$), en déduire que $K[x_1, \ldots, x_n]$ est un K-espace vectoriel de dimension finie. Conclure que $k(x_1, \ldots, x_n)$ est un K-espace vectoriel de dimension finie.
 - (4) En raisonnant sur le degré de transcendance, conclure que $n \leq m$.
- Corrigé. (1) L'hypothèse faite est que la variété $V(\mathfrak{I})$ définie par $f_1=\ldots=f_m=0$ est la même que la variété définie par $x_1=\ldots=x_n=0$. Le Nullstellensatz permet de conclure que pour chaque i il existe r_i tel que $x_i^{r_i}$ appartienne à l'idéal \mathfrak{I} engendré par f_1,\ldots,f_m dans $k[x_1,\ldots,x_n]$. Si on appelle r la somme des r_i alors tout monôme de degré total au moins r comporte nécessairement un facteur $x_i^{r_i}$ pour un certain i, et appartient donc à \mathfrak{I} .
- (2) La conclusion du (1) montre que pour tout monôme q de degré $\geq r$ en les x_i il existe $h_1,\ldots,h_m\in k[x_1,\ldots,x_n]$ tels que $q=h_1f_1+\cdots+h_mf_m$. Observons à présent qu'en remplaçant h_i par sa composante homogène de degré (total) $\deg q-d_i$ (ou zéro si $\deg q< d_i$), c'est-à-dire la somme des monômes ayant ce degré, puisque f_i est homogène de degré d_i et q homogène (c'est un monôme!) de degré $\deg q$, on a toujours l'égalité $q=h_1f_1+\cdots+h_mf_m$ (en effet, on n'a pas changé les monômes de degré $\deg q$). On a donc montré (en décomposant chaque h_i comme somme de monômes) que si q est un monôme de degré $\geq r$ alors il est combinaison linéaire à coefficients dans A des monômes de degré < deg q (plus petit que lui). Ou, si on préfère, l'égalité $q=h_1f_1+\cdots+h_mf_m$ se réinterprète comme $q=g(x_1,\ldots,x_n)$ où $g\in A[x_1,\ldots,x_n]$ (avec $A=k[f_1,\ldots,f_m]$) et $\deg g<\deg q$. En récrivant de nouveau les monômes (dans g) qui sont de plus grand degré $\geq r$ comme combinaison des monômes de degré strictement plus petit qu'eux, et en itérant ce processus (qui termine vu que le degré de g décroît strictement à chaque étape tant qu'il est au moins égal à r), on finit par arriver à deg q< r, d'où la conclusion souhaitée.
- (3) On vient de voir que tout monôme en les x_1,\ldots,x_n s'écrit comme combinaison linéaire à coefficients dans A, donc à plus forte raison dans K, des monômes de degré < r. Comme il n'y a qu'un nombre fini de monômes de degré < r, le K-espace vectoriel engendré (dans $k(x_1,\ldots,x_n)$) par tous les monômes en les x_i est de dimension finie, c'est-à-dire exactement que $K[x_1,\ldots,x_n]$ est un K-espace vectoriel de dimension finie. Or c'est également un anneau intègre (puisque c'est un sous-anneau du corps $k(x_1,\ldots,x_n)$): et un anneau intègre de dimension finie sur un corps est lui-même un corps (puisque la multiplication par un élément non nul est injective donc bijective). Ainsi, $K[x_1,\ldots,x_n]$ est le corps $K(x_1,\ldots,x_n)$, qui coïncide donc avec $k(x_1,\ldots,x_n)$ (étant contenu dedans...). On a donc prouvé que $k(x_1,\ldots,x_n)$ est un K-espace vectoriel de dimension finie.

(4) L'extension de corps $K \subseteq k(x_1, \ldots, x_n)$ étant finie, elle est algébrique. On peut alors extraire de f_1, \ldots, f_m une base de transcendance sur k de $K = k(f_1, \ldots, f_m)$, et celle-ci est encore une base de transcendance sur k de $k(x_1,\ldots,x_n)$, donc deg.tr_k $k(x_1,\ldots,x_n) \leq$ m. Or manifestement x_1, \ldots, x_n est une base de transcendance de $k(x_1, \ldots, x_n)$ donc on a $\operatorname{deg.tr}_k k(x_1,\ldots,x_n) = n$. On a bien prouvé $n \leq m$.

2 (théorème de Tsen). Soit k un corps algébriquement clos, k(t) le corps des fractions rationnelles à une indéterminée sur k. On considère un polynôme $f \in k(t)[x_1,\ldots,x_n]$ homogène de degré d à n+1 indéterminées à coefficients dans k(t), où 0 < d < n (le degré est strictement inférieur au nombre d'indéterminées). Montrer que f a un zéro non trivial : il existe x_1, \ldots, x_n dans k(t), non tous nuls, tels que $f(x_1, \ldots, x_n) = 0$. Pour cela, on supposera (quitte à chasser les dénominateurs) que les coefficients de f sont dans k[t], et on cherchera une solution (x_1, \ldots, x_n) avec $x_\ell = \sum_{j=0}^N c_{\ell,j} t^j$, où les $c_{\ell,j}$ sont à déterminer et où N est un entier suffisamment grand : en considérant alors $f(x_1,\ldots,x_n)=0$ comme un système en les $c_{\ell,j}$, on appliquera le résultat de l'exercice 1.

Corrigé. Écrivons

$$f(x_1, \dots, x_n) = \sum_{i_1 + \dots + i_n = d} a_{i_1, \dots, i_n} x_1^{i_1} \cdots x_n^{i_n}$$

Quitte à chasser les dénominateurs, on peut supposer que les a_i sont dans k[t]. Soit δ le plus grand de leurs degrés. On cherche un zéro non trivial dans k[t] par la méthode des coefficients indéterminés, en écrivant chaque x_ℓ (pour ℓ allant de 1 à n) comme un polynôme de degré Nen t, mettons $x_{\ell} = \sum_{j=0}^{N} c_{\ell,j} t^{j}$. Alors l'équation $f(x_1, \dots, x_n) = 0$ devient un système d'équations homogènes en les n(N+1) coefficients $c_{\ell,j}$ des polynômes $x_{\ell}(t)$ exprimant la nullité des coefficients du polynôme en question. (Mieux vaut ne pas essayer d'écrire ce système! Mais si on y tient, c'est

$$(\forall j) \sum_{\substack{s_{1,0}+\dots+s_{n,N}=d\\s_{1,1}+\dots+Ns_{n,N}+r=j}} \frac{(\Sigma s_{1,\bullet})!\dots(\Sigma s_{n,\bullet})!}{s_{1,0}!\dots s_{n,N}!} a_{(\Sigma s_{1,\bullet}),\dots,(\Sigma s_{n,\bullet});r} c_{1,0}^{s_{1,0}} \cdots c_{n,N}^{s_{n,N}} = 0$$

où $\Sigma s_{\ell,\bullet}$ désigne $s_{\ell,0}+\cdots+s_{\ell,N}$ et $a_{i_1,\ldots,i_n;r}$ est le coefficient de t^r dans le polynôme $a_{i_1,\ldots,i_n}\in$ k[t], et où j parcourt les entiers de 0 à $Nd+\delta$.) Ce système a $Nd+\delta+1$ équations en n(N+1)variables, chacune homogène de degré (total) d. Puisque d < n, on a $Nd + \delta + 1 < n(N+1)$ pour N assez grand. On conclut d'après le résultat de l'exercice 1.