Rappels: Pour tout naturel q, il existe un corps fini ayant q éléments si et seulement si q s'écrit de la forme p^d avec p un nombre premier et $d \geq 1$; dans ce cas, le corps en question est unique à isomorphisme près et on le note \mathbb{F}_q : il est de caractéristique p et a $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ comme corps premier, sur lequel il est de degré d. Le corps \mathbb{F}_q , avec $q = p^d$, peut être vu comme un sous-corps de $\mathbb{F}_{q'}$, avec $q' = p'^{d'}$, si et seulement si p' = p et d|d', auquel cas ce sous-corps est unique (et \mathbb{F}_q se voit comme l'ensemble des racines du polynôme $t^q - t$ dans $\mathbb{F}_{q'}$; inversement, $\mathbb{F}_{q'}$ se voit comme un corps de décomposition de $t^{q'} - t$ dans \mathbb{F}_q). Le groupe multiplicatif \mathbb{F}_q^\times de \mathbb{F}_q —comme tout groupe multiplicatif fini d'un corps—est cyclique, c'est le groupe des racines (q-1)-ièmes de l'unité dans \mathbb{F}_q . Le groupe des automorphismes de $\mathbb{F}_{q'}$ laissant fixe \mathbb{F}_q , ou groupe de Galois de $\mathbb{F}_{q'}$ sur \mathbb{F}_q , est cyclique d'ordre d'/d engendré par le frobenius « élévation à la puissance q », soit Fr_q : $x \mapsto x^q$. Pour tout élément x de \mathbb{F}_q il existe un plus petit d tel que $x \in \mathbb{F}_{q^d}$, qui divise tous les autres, et ce d s'appelle le degré de x sur \mathbb{F}_q —c'est aussi l'ordre de \mathbb{Fr}_q opérant sur x (c'est-à-dire le cardinal de l'orbite) et c'est aussi le degré de l'unique polynôme irréductible unitaire sur \mathbb{F}_q dont x est racine (le polynôme minimal de x, dont les autres racines sont justement l'orbite de x par Galois).

1. Soit $q=p^d$ (où p est un nombre premier et $d\geq 1$) et soit $k\geq 1$ un entier naturel. Le nombre de polynômes unitaires de degré k dans \mathbb{F}_q est manifestement q^k . Montrer que le nombre de polynômes unitaires de degré k sur \mathbb{F}_q qui sont irréductibles est

$$\frac{1}{k} \sum_{\ell \mid k} \mu(\ell) \, q^{k/\ell}$$

où ℓ parcourt les diviseurs de k et $\mu(\ell)$ désigne la fonction de Möbius¹. (Indication : compter les éléments de \mathbb{F}_{q^k} en fonction de leur degré sur \mathbb{F}_q , ou bien regarder les orbites par l'action du groupe de Galois $G = \langle \operatorname{Fr}_q \rangle$ sur \mathbb{F}_{q^k} .) On dit qu'un tel polynôme est *primitif* lorsque, de plus, une de ses racines (et donc n'importe laquelle de ses racines) est un générateur du groupe multiplicatif $\mathbb{F}_{q^k}^{\times}$: montrer que le nombre de polynômes unitaires irréductibles de degré k sur \mathbb{F}_q qui sont primitifs est

$$\frac{1}{k}\phi(q^k-1)$$

où $\phi(n)$ désigne la fonction indicatrice d'Euler². Calculer ces valeurs pour q=2 et k=6.

2 (test d'irréductibilité de Rabin). Soit $f \in \mathbb{F}_q[t]$ un polynôme de degré k à coefficients dans \mathbb{F}_q . Montrer que f est irréductible si et seulement si il vérifie les deux conditions suivantes : (a) f divise $t^{q^k} - t$, et (b) f est premier à $t^{q^\ell} - t$ pour tout diviseur strict ℓ de k. (On signalera si oui ou non il est nécessaire de mettre les deux conditions.) Expliquer pourquoi ceci fournit un algorithme efficace permettant de déterminer si f est irréductible (en supposant qu'on sache déjà faire des calculs dans \mathbb{F}_q); puis expliquer pourquoi la connaissance d'un tel algorithme permet de faire des calculs dans \mathbb{F}_{p^k} .

- 3 (résolubilité des équations quadratiques). On se demande à quelle condition une équation du second degré $x^2 + bx + c = 0$ admet une solution dans \mathbb{F}_q .
- (1) Dans un premier temps, supposons q impair. Par translation, se ramener à une équation de la forme $y^2-d=0$, en précisant la valeur de d. Montrer que cette équation a une solution si et seulement si d=0 ou $d^{(q-1)/2}=1$.
- (2) Supposons maintenant que q est une puissance de 2. Que se passe-t-il si b=0? On exclut dorénavant ce cas. Par homothétie cette fois, se ramener à une équation de la forme $z^2+z+e=0$, en précisant la valeur de e. Montrer que cette équation a une solution si et seulement si $e+e^2+e^4+\cdots+e^{q/2}=0$.

⁽¹⁾ Soit $\mu(n)=0$ si n est divisible par un carré et $\mu(n)=(-1)^s$ sinon, avec s le nombre de facteurs premiers — forcément distincts — de n.

⁽²⁾ Soit $\phi(n) = \operatorname{card}((\mathbb{Z}/n\mathbb{Z})^{\times})$.

- **4 (théorème de Chevalley-Warning).** Soit $\mathbb{F} = \mathbb{F}_q$ un corps fini (de caractéristique p), et $f \in \mathbb{F}[X_0,\ldots,X_n]$ un polynôme homogène de degré d>0 en n+1 variables avec $d\leq n$: on cherche à montrer que f a un zéro non trivial (c'est-à-dire autre que $(0,\ldots,0)$). (En termes géométriques : une hypersurface de degré $d\leq n$ dans \mathbb{P}^n sur un corps fini \mathbb{F} a toujours un point sur \mathbb{F} .) Pour cela, on montrera que le nombre de zéros de f dans \mathbb{F}^{n+1} est multiple de p, en considérant la somme des $f(x_0,\ldots,x_n)^{q-1}$ où (x_0,\ldots,x_n) parcourt tous les (n+1)-uplets d'éléments de \mathbb{F} .
- 5 (« petit » théorème de Wedderburn). Soit D une algèbre à divisions (= corps gauche) finie (de cardinal fini). On se propose de montrer que D est, en fait, un corps. Soit $\mathbb F$ le centre de D (c'est-à-dire l'ensemble des $x\in D$ tels que $(\forall y\in D)(xy=yx)$), qui est un corps fini, et q son cardinal, et soit n la dimension de D comme $\mathbb F$ -espace vectoriel. Écrire l'équation aux classes pour l'action de D^\times sur lui-même par conjugaison. En notant $\Phi_n\in\mathbb Z[t]$ le n-ième polynôme cyclotomique, en déduire que $\Phi_n(q)$ divise q-1. Obtenir une contradiction si n>1 en prouvant que $|\Phi_n(q)|>q-1$.
- 6 (loi de réciprocité quadratique). Si p est un nombre premier impair, et n un entier non multiple de p (ou un élément de \mathbb{F}_p^\times), on définit le symbole de Legendre $\left(\frac{n}{p}\right)$ comme +1 si n est un carré dans \mathbb{F}_p , et -1 sinon. Remarquer que $\left(\frac{mn}{p}\right) = \left(\frac{n}{p}\right)\left(\frac{n}{p}\right)$ et que $\left(\frac{n}{p}\right) \equiv n^{(p-1)/2}$ (mod p). Soient maintenant p et q deux nombres premiers impairs distincts, et soit ζ une racine primitive p-ième de l'unité dans une extension de \mathbb{F}_q . Posons $S = \sum_{x \in \mathbb{F}_p^\times} \left(\frac{x}{p}\right) \zeta^x \in \mathbb{F}_q$: montrer que $S^2 = \left(\frac{-1}{p}\right) p$ et que $S^q = \left(\frac{q}{p}\right) S$. En déduire la loi de réciprocité quadratique :

$$\left(\frac{q}{p}\right)\left(\frac{p}{q}\right) = (-1)^{(p-1)(q-1)/4}$$

- 7 (bracelets de De Bruijn). On appelle bracelet de De Bruijn d'ordre $k \geq 1$ sur un alphabet (ensemble) fini A à $q \geq 1$ éléments une application b de $\mathbb{Z}/q^k\mathbb{Z}$ vers A telle que pour tout k-uplet (a_0,\ldots,a_{k-1}) d'éléments de A il existe un $i \in \mathbb{Z}/q^k\mathbb{Z}$ (manifestement unique) pour lequel $a_0 = b(i)$, $a_1 = b(i+1)$ et ainsi de suite jusqu'à $a_{k-1} = b(i+k-1)$. Autrement dit, il s'agit d'un bracelet de longueur q^k sur les q perles de l'alphabet, qui contient toute combinaison possible de k perles consécutives. On se propose de montrer que pour tout k et tout q il exite un bracelet de De Bruijn.
- (1) Dans le cas où $q=p^d$ est une puissance d'un nombre premier p, montrer en utilisant le corps fini \mathbb{F}_{q^k} qu'il existe un bracelet de De Bruijn. On pourra considérer g un générateur du groupe multiplicatif $\mathbb{F}_{q^k}^{\times}$ et décomposer les g^i dans la base $1,g,\ldots,g^{k-1}$ de \mathbb{F}_{q^k} sur \mathbb{F}_q . (Commencer par obtenir un « presque » bracelet de De Bruijn, de longueur q^k-1 , qui contient toutes combinaison de k perles sauf une.)
- (2) Comment peut-on obtenir un bracelet de De Bruijn lorsque q n'est pas une puissance d'un nombre premier mais un produit de telles puissances (c'est-à-dire un entier naturel non nul quelconque)?