Rappel : Si B et B' sont deux A-algèbres, on munit le A-module $B \otimes_A B'$ d'une structure de A-algèbre (dite algèbre produit tensoriel) par la multiplication $(x \otimes x')$ $(y \otimes y') = (xy) \otimes (x'y')$ (et avec l'élément neutre $1_B \otimes 1_{B'}$). Si B (resp. B') est commutative, on peut encore considérer $B\otimes_A B'$ comme une B-algèbre (resp. une B'-algèbre) par $b(x\otimes x')=(bx)\otimes x'$ (resp. $b'(x\otimes x')=(bx)\otimes x'$) $(x') = x \otimes (b'x')$; attention, si B' = B, les deux structures de B-algèbre ainsi définies sur $B \otimes_A B$, bien qu'isomorphes, *ne coïncident pas* en général (on va voir des exemples).

- 1. Soit A un anneau et B une A-algèbre (non nécessairement commutative) non nulle : montrer que $B \otimes_A B$ est encore non nulle.
- Soient m et n des entiers naturels et k un corps : décrire la k-algèbre $\mathbb{M}_m(k) \otimes_k \mathbb{M}_n(k)$ produit tensoriel des algèbres $\mathbb{M}_m(k)$ et $\mathbb{M}_n(k)$ de matrices respectivement $m \times m$ et $n \times n$ sur k.
- **3.** Décrire, en tant qu'algèbre sur \mathbb{R} , le produit tensoriel $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$. On précisera les deux structures de C-algèbre sur ce produit tensoriel (provenant de la multiplication sur le facteur de gauche ou sur le facteur de droite).
- **4.** On appelle algèbre des quaternions, et on note H, l'algèbre (associative mais non commutative) de dimension 4 sur \mathbb{R} engendrée par les trois éléments i, j, k soumis aux relations $i^2 = j^2 = k^2 = ijk = -1$ (on vérifiera que ces relations donnent bien une algèbre de dimension 4...). Montrer qu'il s'agit d'une algèbre à divisions (i.e., tout élément non nul de ℍ admet un inverse) et montrer que $\mathbb{H} \otimes_{\mathbb{R}} \mathbb{C} \cong \mathbb{M}_2(\mathbb{C})$ (on pourra par exemple introduire les matrices $\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$ et $\sigma_j = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$) et $\mathbb{H} \otimes_{\mathbb{R}} \mathbb{H} \cong \mathbb{M}_4(\mathbb{R})$ (on pourra s'inspirer des matrices utilisées pour répondre à la question précédente).