Calculs de produits tensoriels

- **1.** Soient U et V deux espaces vectoriels (sur un corps k). On note $U^{\vee} = \operatorname{Hom}_k(U, k)$ le dual de U. Expliciter une application linéaire naturelle injective $\Phi \colon U^{\vee} \otimes_k V \to \operatorname{Hom}_k(U, V)$. Quelles sont les images des tenseurs purs (c'est-à-dire les $\lambda \otimes v$ avec $\lambda \in U^{\vee}$ et $v \in V$)? Quelle est l'image de l'application Φ ? Quand est-elle un isomorphisme?
- **2.** On rappelle qu'un \mathbb{Z} -module n'est rien d'autre qu'un groupe abélien. (a) Expliquer pourquoi, si M est un groupe abélien et n un entier naturel non nul, le produit tensoriel $M \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z})$ s'identifie naturellement à M/nM. (b) Calculer les produits tensoriels sur \mathbb{Z} de deux quelconques des groupes abéliens parmi : \mathbb{Z} , $\mathbb{Z}/n\mathbb{Z}$ (n un naturel non nul variable), \mathbb{Q} et \mathbb{Q}/\mathbb{Z} . (c) En notant $\mathbb{Z}^{(\mathbb{N})}$ le groupe abélien des suites d'entiers dont presque tous les termes (c'est-à-dire : tous sauf un nombre fini) sont nuls, et $\mathbb{Z}^{\mathbb{N}}$ le groupe abélien de toutes les suites d'entiers, expliciter $\mathbb{Z}^{(\mathbb{N})} \otimes_{\mathbb{Z}} \mathbb{Q}$ et $\mathbb{Z}^{\mathbb{N}} \otimes_{\mathbb{Z}} \mathbb{Q}$, et les comparer à $\mathbb{Q}^{(\mathbb{N})}$ et $\mathbb{Q}^{\mathbb{N}}$. (d) (†) À quelle condition nécessaire et suffisante sur le groupe abélien M le produit tensoriel $M \otimes_{\mathbb{Z}} \mathbb{Q}$ est-il nul ? (On pourra notamment observer que tout élément de ce produit tensoriel s'écrit sous la forme $x \otimes \frac{1}{a}$.)
- **3.** Si A et B sont deux algèbres¹ (commutatives ou non) sur un anneau (commutatif) k, expliquer pourquoi le produit tensoriel $A \otimes_k B$ est encore une k-algèbre pour la multiplication $(x \otimes y) \cdot (x' \otimes y') = (xx') \otimes (yy')$.

Soit k un corps. Quel est le produit tensoriel $k[x] \otimes_k k[y]$ de deux copies de l'algèbre des polynômes à une indéterminée sur k, notamment par rapport à k[x,y]? Que peut-on dire de $k(x) \otimes_k k(y)$ par rapport à k(x,y) (on cherchera à le décrire aussi précisément que possible)?

- **4.** Soit k un corps, et A=k[x,y] l'anneau des polynômes à deux indéterminées x et y sur k (on rappelle qu'il est factoriel). Soit $\mathfrak{m}=(x,y)$ l'idéal de A engendré par x et y qu'on verra notamment comme un A-module. Pour éviter les confusions, on notera $\mathfrak{m}^{\oplus 2}=\mathfrak{m}\oplus\mathfrak{m}$ la somme directe (= le produit direct) de deux copies de \mathfrak{m} , et $\mathfrak{m}^{\cdot 2}=\mathfrak{m}\cdot\mathfrak{m}=(x^2,xy,y^2)$ l'idéal produit de \mathfrak{m} avec lui-même. Le but de l'exercice est de déterminer le produit tensoriel $\mathfrak{m}^{\otimes 2}=\mathfrak{m}\otimes_A\mathfrak{m}$ de \mathfrak{m} avec lui-même au-dessus de A.
- (1) On considère $\varphi \colon A^{\oplus 2} \to \mathfrak{m}$ défini par $\varphi(f,g) = fx + gy$. Expliquer pourquoi φ est surjective et montrer que son noyau est l'image d'une application A-linéaire $\psi \colon A \to A^{\oplus 2}$ injective à préciser.
- (2) En déduire que $\mathfrak{m} \otimes_A \mathfrak{m}$ peut se décrire comme le quotient de $\mathfrak{m}^{\oplus 2}$ par un sous-module isomorphe à \mathfrak{m} que l'on précisera. On appellera $\varphi_{\mathfrak{m}}$ la surjection $\mathfrak{m}^{\oplus 2} \to \mathfrak{m} \otimes_A \mathfrak{m}$ ainsi définie.
- (3) Soit μ : $\mathfrak{m} \otimes_A \mathfrak{m} \to \mathfrak{m}$ défini par $\mu(m \otimes m') = mm'$: quelle est l'image de μ ? Quelle est la composée $\mu\varphi_{\mathfrak{m}}$?
 - (4) Soit $\Delta = x \otimes y y \otimes x \in \mathfrak{m} \otimes_A \mathfrak{m}$. Montrer que $\mu(\Delta) = 0$ et $\Delta \neq 0$.
- (5) Montrer que tout élément du noyau $\ker \mu$ de μ s'écrit de la forme $t\Delta$ pour un $t \in k$: on pourra montrer pour $d \in \ker \mu$ que $d = \varphi_{\mathfrak{m}}(ty, -tx)$.
- (6) Définir une application A-linéaire (non canonique) $\lambda : \mathfrak{m}^{\cdot 2} \to \mathfrak{m} \otimes_A \mathfrak{m}$ telle que la composée $\mu\lambda$ soit l'identité.
 - (7) Conclure quant à la structure de $\mathfrak{m} \otimes_A \mathfrak{m}$ en tant que A-module.

 $^(^1)$ On rappelle que si k est un anneau commutatif, une k-algèbre est un anneau A muni d'un morphisme $\iota \colon k \to A$, non nécessairement injectif, dont l'image est dans le centre de A (cette précision étant évidemment inutile si A est commutatif). Ceci détermine une structure de k-module sur A par $c \bullet a = \iota(c)$ a, et réciproquement tout k-module muni d'une multiplication k-bilinéaire qui fait de A un anneau est une k-algèbre en ce sens pour le morphisme $\iota \colon c \mapsto c \bullet 1_A$.

Divers

- 5. Soient U et V deux espaces vectoriels de dimensions finies m et n respectivement sur un corps k. Soient $f\colon U\to U$ et $g\colon V\to V$ des endomorphismes (k-linéaires). Montrer que les coefficients du polynôme caractéristique $\chi_{f\otimes g}$ de $f\otimes g\colon U\otimes_k V\to U\otimes_k V$ sont fonction polynomiale de ceux des polynômes caractéristiques χ_f et χ_g de f et g.
- **6.** (†) Soit $\varphi \colon A \to B$ un morphisme d'anneaux (commutatifs). Tout B-module M peut être considéré comme un A-module par la multiplication $a \bullet x = \varphi(a) \cdot x$ pour $a \in A$ et $x \in M$. Montrer l'équivalence entre (i) toute application A-linéaire $M \to N$ de B-modules est automatiquement B-linéaire, (ii) une quelconque des deux flèches $B \to B \otimes_A B$ (données par $b \mapsto 1 \otimes b$ et $b \mapsto b \otimes 1$) est un isomorphisme (auquel cas les deux coïncident) et (iii) pour n'importe quel B-module M, la flèche $M \to B \otimes_A M$ donnée par $x \mapsto 1 \otimes x$ est un isomorphisme et les structures de B-module de $B \otimes_A M$ sont les mêmes pour la multiplication sur le facteur de gauche ou de droite.