Avertissement : Pour obtenir une très bonne note, il n'est pas nécessaire de répondre à l'ensemble des questions.

- 1. Déterminer le groupe de Galois sur Q des polynômes suivants :
 - (a) $t^8 + 1$:
 - (b) $32t^5 + 16t^4 32t^3 12t^2 + 6t + 1 = 32 \prod_{i=1}^{5} (t \cos(\frac{2i\pi}{11}));$
 - (c) $t^5 70t^4 49t^3 70t^2 + 98t + 105$.

Corrigé. (a) Le corps de décomposition sur \mathbb{Q} de t^8+1 est $\mathbb{Q}(\zeta)$ avec ζ une racine primitive 16-ième de l'unité (les racines primitives 16-ièmes, $\zeta, \zeta^3, \zeta^5, \ldots, \zeta^{15}$ sont même exactement les racines de t^8+1): donc le groupe de Galois est $(\mathbb{Z}/16\mathbb{Z})^\times \cong (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/4\mathbb{Z})$.

- (b) Soit $E=\mathbb{Q}(\zeta)$ où ζ est une racine primitive 11-ième de l'unité : ainsi, $\operatorname{Gal}(E/\mathbb{Q})=(\mathbb{Z}/11\mathbb{Z})^{\times}\cong(\mathbb{Z}/2\mathbb{Z})\times(\mathbb{Z}/5\mathbb{Z})$. En appelant L le corps de décomposition du polynôme considéré, c'est-à-dire engendré par les $\cos(\frac{2i\pi}{11})=\frac{1}{2}(\zeta^i+\zeta^{-i})$, on a manifestement $\mathbb{Q}\subseteq L\subseteq E$, donc $\operatorname{Gal}(L/\mathbb{Q})$ est le quotient de $(\mathbb{Z}/2\mathbb{Z})\times(\mathbb{Z}/5\mathbb{Z})$ par $\operatorname{Gal}(E/L)$; or ce dernier contient la conjugaison complexe, qui est d'ordre 2, et ζ vérifie sur L l'équation $\zeta^2-2\cos(\frac{2\pi}{11})\zeta+1=0$, bref [E:L]=2 et $[L:\mathbb{Q}]=5$ et on peut conclure $\operatorname{Gal}(L/\mathbb{Q})\cong \mathbb{Z}/5\mathbb{Z}$.
- (c) La réduction modulo 2 de ce polynôme est t^5+t^3+1 , qui est irréductible (pour s'en convaincre, il suffit par exemple de constater que modulo t^5+t^3+1 on a $t^{32}\equiv t$, ce qui peut se faire en élevant successivement au carré : $t^8\equiv t^4+t^3+t$ donc $t^{16}\equiv t^3+t^2$ et $t^{32}\equiv t$). Quant à la réduction modulo 5, elle se factorise comme $t^5+t^3-2t=t(t+1)(t-1)(t^2+2)$ et le facteur t^2+2 est irréductible : de ces deux considérations on déduit qu'il y a dans le groupe de Galois sur $\mathbb Q$, agissant sur les cinq racines, une transposition et un 5-cycle, or il est facile de voir qu'une transposition et un 5-cycle engendrent toujours \mathfrak{S}_5 (on peut supposer que le 5-cycle est $(1\ 2\ 3\ 4\ 5)$ et que la transposition est $(1\ x)$ avec x valant 2 ou 3). Le groupe de Galois est donc \mathfrak{S}_5 .

On pouvait aussi remarquer que le polynôme est d'Eisenstein en 7 pour obtenir l'irréductibilité : avec la réduction modulo 5 cela permet de conclure car tout sous-groupe transitif de \mathfrak{S}_5 contenant une transposition est tout \mathfrak{S}_5 . La transposition pouvait aussi s'obtenir en constatant que le polynôme a deux racines complexes conjuguées (mais c'est beaucoup plus fastidieux que de réduire modulo 5). On pouvait aussi déduire de la réduction modulo 3, à savoir $t^5 - t^4 - t^3 - t^2 - t = t(t-1)(t^3 - t + 1)$ l'existence d'un 3-cycle dans le groupe de Galois (mais ça n'exclut pas la possibilité de \mathfrak{A}_5).

2. Soient $n \geq 1$ un entier et R un anneau commutatif. Soient L le module libre R^{2n} et A une matrice de format $2n \times 2n$ à coefficients dans R qui est antisymétrique, c'est-à-dire que l'on a $a_{ii} = 0$ et $a_{ij} = -a_{ji}$ pour tous $1 \leq i, j \leq 2n$. On définit l'élément $\omega(A)$ de $\bigwedge^{2n}(L)$ par

$$\omega(A) = \sum_{i < j} a_{ij} \, e_i \wedge e_j$$

(a) Supposons que n=2. Expliciter un polynôme Pf en les variables X_{ij} , $1 \le i < j \le 4$, à coefficients entiers tel qu'on ait

$$\omega(A)^2 = 2 \operatorname{Pf}(A) e_1 \wedge e_2 \wedge e_3 \wedge e_4$$

(b) Montrer qu'il existe un unique polynôme Pf, le *pfaffien*, à coefficients entiers en les variables X_{ij} , $1 \le i < j \le n$, tel qu'on ait

$$\omega(A)^n = n! \operatorname{Pf}(A) e_1 \wedge \cdots \wedge e_{2n}$$

quels que soient R et A.

(c) Soit $f: \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ une application R-linéaire de matrice B dans la base canonique. Montrer qu'on a

$$\omega(B A^t B) = \bigwedge^2(f) (\omega(A))$$

En déduire qu'on a

$$Pf(B A^t B) = \det(B) Pf(A)$$

quels que soient R, A et B.

(d) Supposons que R est un corps et que A est inversible. Rappelons qu'il existe alors une matrice inversible B telle que $A = B J^t B$, où

$$J = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}$$

Montrer que l'on a

$$\det(A) = \operatorname{Pf}(A)^2$$

(e) Montrer que l'on a $\det = \mathrm{Pf}^2$, pour une matrice antisymétrique, dans l'anneau des polynômes à coefficients entiers en les variables X_{ij} , $1 \le i, j \le 2n$.

Corrigé. (a) Pour n=4, on a $\omega(A)=a_{12}\,e_1\wedge e_2+a_{13}\,e_1\wedge e_3+a_{14}\,e_1\wedge e_4+a_{23}\,e_2\wedge e_3+a_{24}\,e_2\wedge e_4+a_{34}\,e_3\wedge e_4.$ En développant $\omega(A)^2$, chacun de ces six termes n'a un produit non nul qu'avec un seul autre, et on trouve $\omega(A)^2=2(a_{12}a_{34}-a_{13}a_{24}+a_{14}a_{23})\,e_1\wedge e_2\wedge e_3\wedge e_4$, d'où le polynôme recherché, $X_{12}X_{34}-X_{13}X_{24}+X_{14}X_{23}$.

(b) En développant complètement $\omega(A)^2$, seuls subsistent les termes produits de a_{ij} $e_i \wedge e_j$ où tous les i et j qui interviennent dans les différents facteurs sont distincts. On peut donc écrire $\omega(A)^2 = \sum_{\gamma,\gamma'} \prod_{i=1}^n a_{\gamma(i)\gamma'(i)} e_{\gamma(i)} \wedge e_{\gamma'(i)}$ où la somme porte sur les couples (γ,γ') d'injections $\{1,\ldots,n\} \to \{1,\ldots,2n\}$ à images disjointes et vérifiant $\gamma(i) < \gamma'(i)$ pour tout i (et le produit a un sens vu que sur les éléments de degré pair la multiplication dans $\bigwedge^{2n}(L)$ est commutative).

En réordonnant chaque produit pour faire intervenir $\vec{e} = e_1 \wedge \cdots \wedge e_{2n}$, on voit que chaque $\prod_{i=1}^n a_{\gamma(i)\gamma'(i)} \, e_{\gamma(i)} \wedge e_{\gamma'(i)}$ se réécrit $\varepsilon(\gamma||\gamma') \left(\prod_{i=1}^n a_{\gamma(i)\gamma'(i)}\right) \vec{e}$, c'est-à-dire affublé d'un signe $\varepsilon(\gamma||\gamma')$ qui est le signe de la permutation $\gamma||\gamma'|$ de $\{1,\ldots,2n\}$ obtenu en intercalant γ et γ' (formellement, pour $1 \leq i \leq n$, on a $(\gamma||\gamma')(2i-1) = \gamma(i)$ et $(\gamma||\gamma')(2i) = \gamma'(i)$).

Or, pour γ, γ' deux injections $\{1, \ldots, n\} \to \{1, \ldots, 2n\}$ à images disjointes, cette signature $\varepsilon(\gamma||\gamma')$ ne dépend que de l'ensemble des couples $(\gamma(i), \gamma'(i))$ (puisque, de nouveau, les $e_{\gamma(i)} \wedge e_{\gamma'(i)}$ commutent entre eux), et donc, avec la contrainte $\gamma(i) < \gamma'(i)$, de l'ensemble \mathscr{B} des paires $\{\gamma(i), \gamma'(i)\}$.

On peut donc réécrire $\omega(A)^2$ comme, sur tous les couples (γ,γ') comme précédemment, des termes $\varepsilon(\mathcal{B})$ $(\prod_{b\in\mathcal{B}}a_b)$ \vec{e} , avec $\mathcal{B}=\{\{\gamma(i),\gamma'(i)\}\}$, où $a_b=a_{ij}$ si $b=\{i,j\}$ avec i< j, et $\varepsilon(\mathcal{B})=\varepsilon(\gamma||\gamma')$. Chaque partition \mathcal{B} de $\{1,\ldots,2n\}$ en parties à deux éléments donne, dans cette somme, n! termes tous égaux, un pour chaque γ (énumérant l'ensemble des $\min b$ pour $b\in \mathcal{B}$), γ' étant alors uniquement déterminé : on a ainsi $\omega(A)^2=n!\sum_{\mathcal{B}}\varepsilon(\mathcal{B})$ $(\prod_{b\in\mathcal{B}}a_b)$ \vec{e} , où \mathcal{B} parcourt les partitions de $\{1,\ldots,2n\}$ en parties à deux éléments. On a donc défini $\mathrm{Pf}(A)=\sum_{\mathcal{B}}\varepsilon(\mathcal{B})\prod_{b\in\mathcal{B}}a_b$, qui est manifestement un polynôme universel à coefficients entiers en les $X_b=X_{ij}$ (si on veut, on applique ce qui précède à la matrice A sur $R=\mathbb{Z}[(X_{ij})_{i< j}]$ dont les coefficients sont les indéterminées, et on spécialise).

(c) Appelons a'_{ij} les coefficients de la matrice B $A^t B$ (manifestement antisymétrique), de sorte que $\omega(B A^t B) = \sum_{i < j} a'_{ij} e_i \wedge e_j$ où $a'_{ij} = \sum_{k,\ell} b_{ik} b_{j\ell} a_{k\ell}$. Mais on peut alors écrire $\sum_{i < j} a'_{ij} e_i \wedge e_j = \sum_{i < j} \sum_{k,\ell} b_{ik} b_{j\ell} a_{k\ell} e_i \wedge e_j = \sum_{i < j} \sum_{k < \ell} (b_{ik} b_{j\ell} - b_{i\ell} b_{jk}) a_{k\ell} e_i \wedge e_j$. Ceci vaut donc encore $\sum_{k < \ell} a_{k\ell} \sum_{i < j} (b_{ik} b_{j\ell} - b_{i\ell} b_{jk}) e_i \wedge e_j$. Mais $\sum_{i < j} (b_{ik} b_{j\ell} - b_{jk} b_{i\ell}) e_i \wedge e_j = \sum_{i < j} a_{ik} \sum_{i < j} (b_{ik} b_{j\ell} - b_{jk} b_{i\ell}) e_i \wedge e_j$

 $\sum_{i,j} b_{ik} b_{j\ell} e_i \wedge e_j = f(e_k) \wedge f(e_\ell)$. On a donc prouvé que $\omega(BA^tB) = \sum_{k<\ell} a_{k\ell} f(e_k) \wedge f(e_\ell) = \bigwedge^2(f) (\omega(A))$.

En particulier, $\omega(BA^tB)^n = \bigwedge^{2n}(f) (\omega(A)^n) = \det(B) \omega(A)^n$, ce qui donne exactement $\operatorname{Pf}(BA^tB) = \det(B) \operatorname{Pf}(A)$.

- (d) La formule précédente appliquée à A=B J^tB donne $\operatorname{Pf}(A)=\det(B)$ $\operatorname{Pf}(J)$. Mais $\operatorname{Pf}(J)$ est manifestement un signe (en l'occurrence $(-1)^{n(n-1)/2}$ mais peu importe) vu que, dans l'expression $\sum_{\mathscr{B}} \varepsilon(\mathscr{B}) \prod_{b \in \mathscr{B}} J_b$ obtenue plus haut, une seule partition \mathscr{B} (à savoir $\{\{1,n+1\},$ $\{2,n+2\},\ldots,\{n,2n\}\}$) donne un terme non nul : donc $\operatorname{Pf}(A)^2=\det(B)^2=\det(A)$.
- (e) Les polynômes det et Pf^2 (éléments de $\mathbb{Z}[(X_{ij})_{i < j}]$) prennent les mêmes valeurs sur un ouvert des matrices $A \in \mathbb{M}_{2n}(\mathbb{R})^{\operatorname{antisym}}$, donc ils sont égaux.
- **3.** Soit A un anneau (commutatif ou non commutatif). Un A-module (à gauche) P est *projectif* s'il existe un A-module Q tel que $P \oplus Q$ est libre.
- (a) Observer que tout module libre est projectif. Donner un exemple d'anneau A et de module P qui est projectif mais n'est pas libre.
 - (b) Montrer qu'on a équivalence entre
 - (i) P est projectif;
 - (ii) pour tout morphisme surjectif de A-modules $f: M \to P$, il existe un morphisme $g: P \to M$ tel que $fg = \mathrm{id}_P$.
- (c) Montrer qu'un A-module P est projectif et de type fini ssi il existe un A-module Q tel que $P \oplus Q$ est libre de type fini.
- (d) Supposons que A est un anneau commutatif et local, c'est-à-dire qu'il admet un unique idéal maximal. Notons \mathfrak{m} cet idéal et k le corps A/\mathfrak{m} . Montrer que tout A-module projectif et de type fini est libre. Indication : on pourra construire une base de P en relevant une base de l'espace vectoriel $P/\mathfrak{m}P$.
- $Corrig\acute{e}$. (a) Si P est libre, P est projectif puisque $P\oplus 0$ est libre. La réciproque n'est pas vraie : $P=\mathbb{Z}/2\mathbb{Z}$ est un module projectif sur $A=\mathbb{Z}/6\mathbb{Z}$ puisque $A\oplus Q=A$ avec $Q=\mathbb{Z}/3\mathbb{Z}$, mais manifestement P n'est pas libre.
- (b) Si $P \oplus Q$ est libre, et $f \colon M \to P$ est A-linéaire et surjective, considérons $f \oplus \operatorname{id}_Q \colon M \oplus Q \to P \oplus Q$: visiblement elle est encore surjective. En relevant les éléments d'une base de $P \oplus Q$ on peut donc trouver $g_1 \colon P \oplus Q \to M \oplus Q$ tel que $(f \oplus \operatorname{id}_Q)g_1 = \operatorname{id}_{P \oplus Q}$. Mais alors si $x \in P$ est vu comme $(x,0) \in P \oplus Q$, on a $g_1(x,0) = (y,z)$ vérifiant f(y) = x et z = 0: donc en définissant g comme la composée $P \to P \oplus Q \xrightarrow{g_1} M \oplus Q \to M$, on a $g_1(x) \to g_2$ qui vérifie g(y) = x, ce qu'on voulait : ceci démontre (ii).

Réciproquement, si P vérifie (ii), soit $f\colon A^{(I)}\to P$ une surjection (A-linéaire) quelconque vers P depuis un module libre (par exemple, on peut prendre pour I l'ensemble sous-jacent à P, ou en fait n'importe quelle partie génératrice, et f envoyant une combinaison A-linéaire formelle d'éléments de P sur la combinaison en question dans P), et soit $g\colon P\to A^{(I)}$ une section de f dont l'existence est garantie par (ii). Alors en posant $Q=\ker f$ et en identifiant P à im g, on a $P\oplus Q=A^{(I)}$.

- (c) Si P est projectif de type fini, en reprenant la démonstration de (i) \Rightarrow (ii) ci-dessus avec I fini, on voit qu'on peut écrire $P \oplus Q = A^I$ libre de type fini. Réciproquement, si $P \oplus Q$ est libre de type fini, manifestement P est projectif, mais il est aussi de type fini comme quotient de $P \oplus Q$ (image par la surjection canonique).
- (d) Soit P un module projectif de type fini sur A (commutatif local). Considérons $\overline{P} = P/\mathfrak{m}P$, espace vectoriel sur $k = A/\mathfrak{m}$. Soit $\overline{e}_1, \ldots, \overline{e}_r$ une base de \overline{P} comme k-espace vectoriel (finie car P est de type fini) : d'après le lemme de Nakayama, si e_1, \ldots, e_r sont des

- **4.** Soient K un corps et A une K-algèbre de dimension finie (non nécessairement commutative). L'algèbre A est *séparable* si l'application de multiplication μ : $A \otimes_K A \to A$ admet une section σ qui est A-linéaire à gauche et à droite, c'est-à-dire que σ est une application K-linéaire de A dans $A \otimes_K A$ telle que $\mu \sigma = \mathrm{id}_A$ et $a\sigma(b) = \sigma(ab) = \sigma(a)b$ pour tous a et b dans a.
- (a) Montrer que A est séparable si et seulement si il existe un élément ρ dans $A \otimes_K A$ tel que $\mu(\rho) = 1$ et $a\rho = \rho a$ pour tous a dans A.
- (b) Montrer que $\mathbb{M}_n(K)$ est séparable pour tout entier $n \geq 1$. Indication : essayer $\rho = \sum_{i=1}^n E_{i1} \otimes E_{1i}$.
- (c) Montrer qu'un produit de deux algèbres est séparable si et seulement si chacun des facteurs l'est.
- (d) Montrer qu'une algèbre semi-simple de dimension finie sur un corps algébriquement clos est séparable.
 - (e) Supposons que A est séparable et que B est une K-algèbre quelconque. Soit

$$\rho = \sum_{i=1}^{n} a_i' \otimes a_i''$$

un élément comme dans (a). Soient M et M' des $A \otimes_K B$ -modules et $p: M \to M'$ un morphisme B-linéaire. Montrer que l'application $\overline{p}: M \to M'$ qui envoie un élément m de M sur

$$\sum_{i=1}^{n} a_i' \, p\left(a_i''m\right)$$

est $A \otimes_K B$ -linéaire. Montrer que si M' est un sous-module de M et que la restriction de p à M' est l'identité, alors la restriction de \overline{p} à M' est l'identité.

- (f) Montrer que si A est séparable et que B est une K-algèbre semi-simple, alors $A \otimes_K B$ est semi-simple.
- (g) Montrer que A est semi-simple ssi A^{op} l'est. Indication : l'espace vectoriel DA des formes linéaires $f \colon A \to K$ devient un A-module pour l'action donnée par (af)(b) = f(ba) et les sous-modules de DA sont en bijection naturelle avec les sous-modules du A^{op} -module libre A^{op} .
- (h) Montrer que A est séparable si et seulement si $A \otimes_K B$ est semi-simple pour toute K-algèbre semi-simple B si et seulement si $A \otimes_K A^{\mathrm{op}}$ est semi-simple.

Corrigé. (a) Si A est séparable, $\rho = \sigma(1)$ (où σ est une section (A,A)-linéaire de μ) vérifie $\mu(\rho) = 1$ et $a\rho = a\sigma(1) = \sigma(a) = \sigma(1)a = \rho a$ pour tout $a \in A$. Réciproquement, si un tel élément ρ existe, on définit $\sigma: A \to A \otimes_K A$ par $\sigma(a) = a\rho$: on a $\mu\sigma(a) = \mu(a\rho) = a$ pour tout a, et $a\sigma(b) = ab\rho = \sigma(ab) = a\rho b = \sigma(a)b$.

- (b) Soit $\rho = \sum_{i=1}^n E_{i1} \otimes E_{1i} \in \mathbb{M}_n(K) \otimes_K \mathbb{M}_n(K)$, où E_{ij} est la base canonique de $\mathbb{M}_n(K)$. On a $\mu(\rho) = \sum_{i=1}^n E_{i1} E_{1i} = \sum_{i=1}^n E_{ii} = 1$, et si $a \in \mathbb{M}_n(K)$ est quelconque, qu'on décompose comme $a = \sum_{k,\ell} a_{k\ell} E_{k\ell}$, alors $a\rho = \sum_{i=1}^n a E_{i1} \otimes E_{1i} = \sum_{i,k,\ell} a_{k\ell} E_{k\ell} E_{i1} \otimes E_{1i} = \sum_{i=1}^n a E_{i2} \otimes E_{i3} \otimes E_{i4} \otimes E_{i4} \otimes E_{i4} \otimes E_{i4} \otimes E_{i5} \otimes E_{i5}$ $\sum_{k,\ell} a_{k\ell} E_{k1} \otimes E_{1\ell} \text{ et de même } \rho a = \sum_{i=1}^n E_{i1} \otimes E_{1i} a = \sum_{k,\ell} E_{k1} \otimes E_{1\ell} a_{k\ell} \text{ donc } a\rho = \rho a.$
- (c) Soient A' et A'' deux K-algèbres de dimension finie, et $A = A' \times A''$ (comme Kespaces vectoriels, $A = A' \oplus A''$, et on a bien sûr $1_A = (1_{A'}, 1_{A''})$ qu'on pourra écrire $1_{A'} + 1_{A''}$ en identifiant A' et A'' à $A' \oplus 0$ et $0 \oplus A''$ respectivement).

Si A' et A'' sont séparables, soient ρ', ρ'' tels que donnés par la question (a) témoignant de la séparabilité de A' et A'', et dans l'écriture $A \otimes_K A = (A' \otimes_K A') \oplus (A' \otimes_K A'') \oplus$ $(A'' \otimes_K A') \oplus (A'' \otimes_K A'')$ considérons l'élément $\rho = \rho' + 0 + 0 + \rho''$. On a alors d'une part $\mu(\rho) = 1_{A'} + 1_{A''} = 1_A$ et d'autre part pour $a = (a', a'') \in A$ on a $a\rho = a'\rho' + 0 + 0 + a''\rho'' = \rho a$. Donc $A = A' \times A''$ est séparable.

Réciproquement, si A est séparable, considérons la décomposition de $\rho \in A \otimes_K A$ sur l'écriture $A \otimes_K A = (A' \otimes_K A') \oplus (A' \otimes_K A'') \oplus (A'' \otimes_K A') \oplus (A'' \otimes_K A'')$, mettons $\rho = \rho' + \delta_1 + \delta_2 + \rho''$. En observant $1_{A'}\rho = \rho' + \delta_1 + 0 + 0$ et $\rho 1_{A'} = \rho' + 0 + \delta_2 + 0$ on voit que $\delta_1 = \delta_2 = 0$: ainsi $\rho = \rho' + 0 + 0 + \rho''$ avec $\rho' \in A' \otimes_K A'$ et $\rho'' \in A'' \otimes_K A''$. On a $1_A = \mu(\rho) = \mu(\rho') + \mu(\rho'')$ donc $\mu(\rho') = 1_{A'}$ et $\mu(\rho'') = 1_{A''}$; enfin, si $a = (a', a'') \in A$, alors $a\rho = a'\rho' + 0 + 0 + a''\rho''$ donc $a\rho = \rho a$ implique $a'\rho' = \rho'a'$ et $a''\rho'' = \rho''a''$. Ceci prouve que A' et A'' sont séparables.

- (d) On a vu aux questions précédentes que les algèbres de matrices sont séparables et que les produits d'algèbres séparables sont séparables : or si K est algébriquement clos, toute algèbre semi-simple de dimension finie sur K est un produit d'algèbre de matrices sur K elle est donc séparable.
- (e) Manifestement \overline{p} est additif (\mathbb{Z} -linéaire, et même K-linéaire). Si $b \in B$ et $m \in M$ alors \overline{p} envoie bm (c'est-à-dire $(1_A \otimes b)m$) sur $\sum_i a_i' p(a_i''bm) = \sum_i a_i' b p(a_i''m) = b\overline{p}(m)$, donc la B-linéarité est claire (insistons sur le fait que, dans $A \otimes_K B$, les éléments provenant de A, c'est-à-dire les $a \otimes 1_B$ et ceux provenant de B, c'est-à-dire les $1_A \otimes b$, commutent). Maintenant, si $a \in A$ et toujours $m \in M$, on a $\overline{p}(am) = \sum_i a_i' p(a_i''am)$. Mais $\sum_i a_i' \otimes a_i'' a = \sum_i a a_i' \otimes a_i''$, ce qui signifie que pour *toute* application K-bilinéaire $\varphi \colon A \times A \to V$ on a $\sum_i \varphi(a_i', a_i''a) =$ $\sum_i \varphi(aa_i', a_i'')$, et en particulier en appliquant ça à $\varphi: A \times A \to M$ envoyant (u, v) sur up(vm), on a $\sum_i a_i' p(a_i''am) = \sum_i a a_i' p(a_i''m)$, soit $\overline{p}(am) = a\overline{p}(m)$.
- Si M' est un sous-module de M et $p: M \to M'$ une rétraction, alors pour $m \in M'$ on a $\overline{p}(m) = \sum_i a_i' p(a_i''m) = \sum_i a_i' a_i''m = m$ puisque l'élément ρ vérifie $\mu(\rho) = 1$ c'est-à-dire précisément $\sum_i a_i' a_i'' = 1_A$.
- (f) Soit M un $A \otimes_K B$ -module et M' un sous-module : on va montrer que M' admet un supplémentaire dans M; or ceci revient à trouver une rétraction $A \otimes_K B$ -linéaire $M \to M'$. Mais puisque B est supposée semi-simple, on sait qu'il existe une rétraction B-linéaire $p: M \to \mathbb{R}$ M'. La question précédente montre alors précisément que \bar{p} est une rétraction $A \otimes_K B$ -linéaire.
- (g) Il suffit de montrer que si A est semi-simple alors A^{op} l'est. On va donc montrer que tout sous- A^{op} -module de A^{op} admet un supplémentaire.

Pour cela, on introduit le K-espace vectoriel DA dual de A, qu'on munit d'une structure de A-module (à gauche) en posant (af)(b) = f(ba) si f est une forme K-linéaire sur A. Si $M \subseteq A$ est un sous-K-espace vectoriel on lui associe le sous-K-espace vectoriel $M^{\perp} \subseteq DA$ défini par $M^{\perp}=\{f\in D\bar{A}: f|_{M}=0\}$: on sait bien que M^{\perp} détermine M (comme l'ensemble des $x \in A$ tels que f(x) = 0 pour tout $f \in M^{\perp}$), que tout sous-K-espace vectoriel de DAs'obtient de la sorte, et que l'application $M \mapsto M^{\perp}$ est décroissante (inverse les inclusions) et transforme intersections en sommes et réciproquement. Or si M est un sous- A^{op} -module de A^{op} , ou, ce qui revient au même, un sous-A-module à droite de A, alors M^{\perp} est un sous-

A-module (à gauche) de DA puisque pour $x \in M$ et $f \in M^{\perp}$ on a (af)(x) = f(xa) = 0si $a \in A$ (vu que $xa \in M$); et réciproquement, si M^{\perp} est un sous-A-module (à gauche) de DA alors M est un sous-A-module à droite de A puisque pour $x \in M$ et $f \in M^{\perp}$ on a f(xa)=(af)(x)=0 si $a\in A$ (et car M^\perp détermine M comme rappelé ci-dessus). À présent, si M est un sous- A^{op} -module de A^{op} , ou plutôt un sous-A-module à droite de A, le sous-Amodule M^{\perp} de DA admet un supplémentaire $DA = M^{\perp} \oplus Q$, et on peut écrire $Q = N^{\perp}$, où N est un sous-A-module à droite de A, et $DA = M^{\perp} \oplus N^{\perp}$ assure $M \oplus N = A$. On a donc bien prouvé que A^{op} est semi-simple.

(h) Si A est séparable, on a vu en (f) que $A \otimes_K B$ est semi-simple pour toute K-algèbre semi-simple B, et d'après la question précédente en particulier $A \otimes_K A^{\operatorname{op}}$ est semi-simple. Il reste donc à expliquer pourquoi la semi-simplicité de $A \otimes_K A^{\mathrm{op}}$ implique la séparabilité de A.

Si $A \otimes_K A^{op}$ est semi-simple, considérons la structure de $A \otimes_K A^{op}$ -module sur A donnée par $(a \otimes b)x = axb$ (ceci revient à considérer A comme un (A, A)-bimodule de la façon évidente). Alors l'application $\check{\mu}$: $A \otimes_K A^{\operatorname{op}} \to A$ donnée par $a \otimes b \mapsto ab$ est $A \otimes_K A^{\operatorname{op}}$ -linéaire, et elle est manifestement surjective : puisque $A \otimes_K A^{\mathrm{op}}$ est supposé semi-simple, il existe donc une section $\check{\sigma}: A \to A \otimes_K A^{\mathrm{op}}$ (c'est-à-dire qu'on a $\check{\mu}\check{\sigma} = \mathrm{id}_A$) qui soit $A \otimes_K A^{\mathrm{op}}$ -linéaire, donc vérifiant $\breve{\sigma}(axb) = (a \otimes b) \breve{\sigma}(x)$: or si on considère $\sigma: A \to A \otimes_K A$ au lieu de $\breve{\sigma}: A \to A \otimes_K A^{\mathrm{op}}$ (en identifiant A^{op} à A comme K-espace vectoriel), il vérifie cette fois $\sigma(axb) = a\sigma(x)b$ c'est précisément la propriété par laquelle on a défini la séparabilité.