$\left(A_{2}\right)$ The following diagram is set in the coroot/coweight plane (or the imaginary part of the Lie algebra of a maximal torus):

In red, the coweight lattice, in black the coroot lattice. In brown a fundamental domain for the coroot lattice. In gray the Weyl ("coWeyl?") chamber. At their intersection, the fundamental alcove.

Simple roots: $\alpha_{1}=(1,0)$ and $\alpha_{2}=\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$. Highest root $-\alpha_{0}=$ $\alpha_{1}+\alpha_{2}=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$, with coefficients $m_{1}=1$ and $m_{2}=1$. Associated
 coroots: $\alpha_{1}^{\vee}=(2,0), \alpha_{2}^{\vee}=(-1, \sqrt{3})$.
Coxeter number $h=1+m_{1}+m_{2}=3$.
Fundamental weights: $\varpi_{1}=\left(\frac{1}{2}, \frac{\sqrt{3}}{6}\right), \varpi_{2}=\left(0, \frac{\sqrt{3}}{3}\right)$. Fundamental coweights: $\varpi_{1}^{\vee}=\left(1, \frac{\sqrt{3}}{3}\right), \varpi_{2}^{\vee}=\left(0, \frac{2 \sqrt{3}}{3}\right)$.
Vertices of the fundamental alcove: $v_{0}=(0,0), v_{1}=\varpi_{1}^{\vee}=\left(\frac{1}{2}, \frac{\sqrt{3}}{6}\right)$ and $v_{2}=\varpi_{2}^{\vee}=\left(0, \frac{2 \sqrt{3}}{3}\right)$.
Coweyl vector $\rho^{\vee}=\varpi_{1}^{\vee}+\varpi_{2}^{\vee}=(1, \sqrt{3})$.

Dynkin labeling

$\left(B_{2}\right)$ The following diagram is set in the coroot/coweight plane (or the imaginary part of the Lie algebra of a maximal torus):

In red, the coweight lattice, in black the coroot lattice. In brown a fundamental domain for the coroot lattice. In gray the Weyl ("coWeyl?") chamber. At their intersection, the fundamental alcove.

Simple roots: $\alpha_{1}=(-1,1)$ (long) and $\alpha_{2}=(1,0)$ (short). The full set

α_{0} of positive roots are: $\alpha_{1}=(-1,1), \alpha_{2}=(1,0), \alpha_{1}+\alpha_{2}=(0,1)$, $\alpha_{1}+2 \alpha_{2}=(1,1)$ (highest root $-\alpha_{0}$, with coefficients $m_{1}=1$ and $m_{2}=2$). Associated coroots: $\alpha_{1}^{\vee}=(-1,1), \alpha_{2}^{\vee}=(2,0)$.
Coxeter number $h=1+m_{1}+m_{2}=4$.
Fundamental weights: $\varpi_{1}=(0,1), \varpi_{2}=\left(\frac{1}{2}, \frac{1}{2}\right)$. Fundamental coweights: $\varpi_{1}^{\vee}=(0,1), \varpi_{2}^{\vee}=(1,1)$.
Vertices of the fundamental alcove: $v_{0}=(0,0), v_{1}=\varpi_{1}^{\vee}=(0,1)$ and $v_{2}=\frac{1}{2} \varpi_{2}^{\vee}=\left(\frac{1}{2}, \frac{1}{2}\right)$.
Coweyl vector $\rho^{\vee}=\varpi_{1}^{\vee}+\varpi_{2}^{\vee}=(1,2)$.

$\left(G_{2}\right)$ The following diagram is set in the coroot/coweight plane (or the imaginary part of the Lie algebra of a maximal torus):

In red, the coweight lattice, which coincides with the coroot lattice in black. In brown a fundamental domain for the coroot lattice. In gray the Weyl ("coWeyl?") chamber. At their intersection, the fundamental alcove.

Simple roots: $\alpha_{1}=(1,0)$ (short) and $\alpha_{2}=\left(-\frac{3}{2}, \frac{\sqrt{3}}{2}\right)$ (long).

Highest root $-\alpha_{0}=3 \alpha_{1}+2 \alpha_{2}=(0, \sqrt{3})$, with coefficients $m_{1}=3$ and $m_{2}=2$. Associated coroots: $\alpha_{1}^{\vee}=(2,0), \alpha_{2}^{\vee}=\left(-1, \frac{\sqrt{3}}{3}\right)$.
Coxeter number $h=1+m_{1}+m_{2}=6$.
Fundamental weights: $\varpi_{1}=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right), \varpi_{2}=(0, \sqrt{3})$. Fundamental coweights: $\varpi_{1}^{\vee}=(1, \sqrt{3}), \varpi_{2}^{\vee}=\left(0, \frac{2 \sqrt{3}}{3}\right)$.
Vertices of the fundamental alcove: $v_{0}=(0,0), v_{1}=\frac{1}{3} \varpi_{1}^{\vee}=$
$\left(\frac{1}{3}, \frac{\sqrt{3}}{3}\right)$ and $v_{2}=\frac{1}{2} \varpi_{2}^{\vee}=\left(0, \frac{\sqrt{3}}{3}\right)$.
Coweyl vector $\rho^{\vee}=\varpi_{1}^{\vee}+\varpi_{2}^{\vee}=\left(1, \frac{5 \sqrt{3}}{3}\right)$.
Dynkin labeling $\underset{1}{\circ}$

