(A_2) The following diagram is set in the coroot/coweight plane (or the imaginary part of the Lie algebra of a maximal torus):

In red, the coweight lattice, in black the coroot lattice. In brown a fundamental domain for the coroot lattice. In gray the Weyl ("coWeyl?") chamber. At their intersection, the fundamental alcove.

Simple roots: $\alpha_1 = (1,0)$ and $\alpha_2 = (-\frac{1}{2}, \frac{\sqrt{3}}{2})$. Highest root $-\alpha_0 = \alpha_1 + \alpha_2 = (\frac{1}{2}, \frac{\sqrt{3}}{2})$, with coefficients $m_1 = 1$ and $m_2 = 1$. Associated coroots: $\alpha_1^{\vee} = (2,0), \alpha_2^{\vee} = (-1,\sqrt{3})$. Coxeter number $h = 1 + m_1 + m_2 = 3$. Fundamental weights: $\varpi_1 = (\frac{1}{2}, \frac{\sqrt{3}}{6}), \ \varpi_2 = (0, \frac{\sqrt{3}}{3})$. Fundamental coweights: $\varpi_1^{\vee} = (1, \frac{\sqrt{3}}{3}), \ \varpi_2^{\vee} = (0, \frac{2\sqrt{3}}{3})$. Vertices of the fundamental alcove: $v_0 = (0,0), v_1 = \varpi_1^{\vee} = (\frac{1}{2}, \frac{\sqrt{3}}{6})$ and $v_2 = \varpi_2^{\vee} = (0, \frac{2\sqrt{3}}{3})$. Coweyl vector $\rho^{\vee} = \varpi_1^{\vee} + \varpi_2^{\vee} = (1, \sqrt{3})$. (B_2) The following diagram is set in the coroot/coweight plane (or the imaginary part of the Lie algebra of a maximal torus):

In red, the coweight lattice, in black the coroot lattice. In brown a fundamental domain for the coroot lattice. In gray the Weyl ("coWeyl?") chamber. At their intersection, the fundamental alcove.

Simple roots: $\alpha_1 = (-1, 1)$ (long) and $\alpha_2 = (1, 0)$ (short). The full set of positive roots are: $\alpha_1 = (-1, 1), \alpha_2 = (1, 0), \alpha_1 + \alpha_2 = (0, 1), \alpha_1 + 2\alpha_2 = (1, 1)$ (highest root $-\alpha_0$, with coefficients $m_1 = 1$ and $m_2 = 2$). Associated coroots: $\alpha_1^{\vee} = (-1, 1), \alpha_2^{\vee} = (2, 0)$. Coxeter number $h = 1 + m_1 + m_2 = 4$. Fundamental weights: $\varpi_1 = (0, 1), \varpi_2 = (\frac{1}{2}, \frac{1}{2})$. Fundamental coweights: $\varpi_1^{\vee} = (0, 1), \varpi_2^{\vee} = (1, 1)$. Vertices of the fundamental alcove: $v_0 = (0, 0), v_1 = \varpi_1^{\vee} = (0, 1)$ and $v_2 = \frac{1}{2} \varpi_2^{\vee} = (\frac{1}{2}, \frac{1}{2})$. Coweyl vector $\rho^{\vee} = \varpi_1^{\vee} + \varpi_2^{\vee} = (1, 2)$. ¹ Dynkin labeling $\underset{1 \to 2 \to 0}{\longrightarrow 0 \to \infty}$ and m_i coefficients $\underset{1 \to 2 \to 1}{\longrightarrow 0 \to \infty}$. (G_2) The following diagram is set in the coroot/coweight plane (or the imaginary part of the Lie algebra of a maximal torus):

In red, the coweight lattice, which coincides with the coroot lattice in black. In brown a fundamental domain for the coroot lattice. In gray the Weyl ("coWeyl?") chamber. At their intersection, the fundamental alcove.

Simple roots: $\alpha_1 = (1,0)$ (short) and $\alpha_2 = \left(-\frac{3}{2}, \frac{\sqrt{3}}{2}\right)$ (long). Highest root $-\alpha_0 = 3\alpha_1 + 2\alpha_2 = (0,\sqrt{3})$, with coefficients $m_1 = 3$ and $m_2 = 2$. Associated coroots: $\alpha_1^{\vee} = (2,0), \alpha_2^{\vee} = (-1,\frac{\sqrt{3}}{3})$. Coxeter number $h = 1 + m_1 + m_2 = 6$. Fundamental weights: $\varpi_1 = (\frac{1}{2}, \frac{\sqrt{3}}{2}), \varpi_2 = (0,\sqrt{3})$. Fundamental coweights: $\varpi_1^{\vee} = (1,\sqrt{3}), \varpi_2^{\vee} = (0,\frac{2\sqrt{3}}{3})$. Vertices of the fundamental alcove: $v_0 = (0,0), v_1 = \frac{1}{3}\varpi_1^{\vee} = (\frac{1}{3}, \frac{\sqrt{3}}{3})$ and $v_2 = \frac{1}{2}\varpi_2^{\vee} = (0,\frac{\sqrt{3}}{3})$. $-\alpha_2$ Coweyl vector $\rho^{\vee} = \varpi_1^{\vee} + \varpi_2^{\vee} = (1,\frac{5\sqrt{3}}{3})$. Dynkin labeling $\underbrace{\frown}_1 = 0$ and m_i coefficients $\underbrace{\frown}_3 = 0$.