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The goal of this note is to prove the following theorem for arbitrary metric spaces (separable or not),
and to draw a few consequences of it:

Theorem. Every metric space M in which every non-empty open set contains ≥ m ≥ ℵ0 points, is sum
of m disjoint sets, each of which contains ≥ m points of every non-empty open set ⊂M .

Proof. A point p of a set E contained in a metric space M is called point of order n of E when every
open sphere [i.e., “ball” — translator’s note] with centre p and sufficiently small radius contains precisely
n points of E. (It is easy to prove that every point p of a set E is of some precise order n: namely n is the
smallest of all the cardinal numbers EU , where U is any open sphere of centre p.)

A set E ⊂M is called homogeneous of order n when every point of E is a point of order n of E1.

Lemma 1. If M is a metric space which is dense-in-itself, and U a non-empty open subset ⊂ M , there
exists an open sphere S, ∅ 6= S ⊂ U , which is a homogeneous set.

Proof. Let n be the smallest of all the cardinal numbers S, where S is a non-empty open sphere ⊂ U .
So there exists an open sphere ⊂ U such that S = n. If the set S were not homogeneous, there would
exist a non-empty open sphere S1 ⊂ S such that S1 6= n, so S1 < n, contrary to the definition of the
number n. The lemma is thus proved.

Lemma 2. Every metric space M with cardinality n ≥ ℵ0 in which every point is of order n, is sum of n
disjoint sets such that every neighbourhood of every point of M contains n points of each of the sets.

Proof. Let M be a metric space of cardinality n = ℵα in which every point is of order n. Let F be
the family of all the open spheres whose centre is a point of M and radius = 1

n , where n = 1, 2, . . ..
The family F is obviously of cardinality n · ℵ0 = ℵαℵ0 = ℵα and, every point of M being of order
n, every sphere of the family F is a set of cardinality n = ℵα. But, as Mr. Kuratowski2 proved, if
F = {Eξ}ξ<ωα is a transfinite sequence of type ωα of sets of cardinality ℵα, there exists a transfinite
sequence of type ωα of disjoint sets of cardinality ℵα, {Hξ}ξ<ωα

, such that Hξ ⊂ Eξ for ξ < ωα. But
Hξ, being a set of cardinality ℵα, is (because ℵα2 = ℵα) sum of ℵα disjoint sets with cardinality ℵα; say
Hξ =

∑
η<ωα

Hξ,η . Let Pη =
∑
ξ<ωα

Hξ,η for η < ωα. Since Hξ,η ⊂ Hξ ⊂ Eξ for ξ < ωα, η < ωα,
the set Pη contains ℵα points of every sphere with centre p and radius 1/n for p ∈ M , n = 1, 2, . . ..
Every neighbourhood of every point of M therefore contains n points of each of the sets Pη for η < ωα.
But the sets Pη (η < ωα) are obviously disjoint. Lemma 2 is thus proved.

Let M be a given metric space in which every open set contains ≥ m points; let

x1, x2, . . . , xω, xω+1, . . . , xξ, . . . (1)

be a transfinite sequence consisting of all the points of M , and

S1, S2, . . . , Sω, Sω+1, . . . , Sξ, . . . (2)

1This notion is due to G. Cantor: Acta Math. 7 (1885), p. 118; cf. also W. Sierpiński, Fund. Math. 1, p. 28.
2See Fund. Math. 34 (1947), p. 35, lemma 1.
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be a transfinite sequence consisting of all the non-empty open spheres whose centres are the points of M .
We will define by transfinite induction a transfinite sequence of spheres

T1, T2, . . . , Tω, Tω+1, . . . , Tξ, . . . (3)

as follows.
The spaceM is evidently dense-in-itself; from lemma 1, there exists a non-empty open sphere S ⊂M

such that the set S is homogeneous, say of order n. If p is a point of S, there exists a sphere S∗ ⊂ S
of centre p, and such that S∗ is homogeneous of order n and cardinality n. So in the sequence (2) there
exists a first term Sλ such that Sλ is a homogeneous set of order Sλ. Let T1 = Sλ.

Let α be an ordinal number < 1 [sic] and suppose we have already defined all the spheres Tξ where
ξ < α. Let Hα =

∑
ξ<α Tξ (where E denotes the closure of the set E). If M ⊂ Hα, the definition of the

sequence (3) is finished (it is then of type α). If M −Hα 6= ∅, the set M −Hα is open and non-empty
and, as above, because of lemma 1, we can conclude that there exists in sequence (2) a first term Sµ

[contained in M −Hα] such that Sµ is a homogeneous set of cardinality [order] Sµ. We let Tα = Sµ.
The sequence (3) is thus defined by transfinite induction. Let ϑ be its type; the spheres Tξ (ξ < ϑ)

are evidently disjoint and we have M ⊂
⋃
ξ<ϑ Tξ. The set Tξ is homogeneous of order Tξ ≥ m = ℵγ .

According to lemma 2 we thus have Tξ =
∑
η<ωγ

Kξ,η , where Kγ,ξ (η < ωγ) are disjoint sets each of

which contains Tξ ≥ m points of each neighbourhood of any point of Tξ. Let Kη =
∑
ξ<ϑKξ,η for

η < ωγ . I claim that the sets Kη (η < ωγ) satisfy the theorem.
The sets Kξ,η (ξ < ϑ, η < ωγ) being disjoint, the sets Kη (η < ωγ) are also. Let U be a non-empty

open set ⊂ M . As U ⊂ M ⊂
∑
ξ<ϑ Tξ and U is open and non-empty, there exists a point p of the set∑

ξ<ϑ Tξ such that p ∈ U , and there exists an ordinal ν < ϑ such that p ∈ Tν . Now, the setKν,η contains

Tν ≥ m points of each neighbourhood of any point of Tν , so m points of U . The set Kη ⊂ Kν,η thus
contains m points of U . So the theorem is proved.

For m = ℵ0, our theorem immediately gives the following

Corollary 1. Every dense-in-itself metric spaceM is sum of an infinite sequence of disjoint dense subsets
of M .

I have given elsewhere3 a direct proof of this corollary.
Since condensed sets coincide with sets in which every point is of order ≥ ℵ1, it follows immediately

from our theorem (for m = ℵ1) that:

Corollary 2. Every condensed metric space M is sum of an uncountable infinity of condensed metric
sets which are dense in M .

3Proceedings of the Benares Mathematical Society New Series Vol. VII (1945), pp. 29–31; cf. E. Hewitt, Duke Math. Journ. 10
(1943), pp. 309–333.
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