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Foreword

This volume is an English translation of “Cohomologie Galoisienne”. The original
edition (Springer LN5, 1964) was based on the notes, written with the help of
Michel Raynaud, of a course I gave at the Collége de France in 1962-1963. In
the present edition there are numerous additions and one suppression: Verdier’s
text on the duality of profinite groups. The most important addition is the
photographic reproduction of R. Steinberg’s “Regular elements of semisimple
algebraic groups”, Publ. Math. LH.E.S., 1965. I am very grateful to him, and to
LH.E.S., for having authorized this reproduction.
Other additions include:

— A proof of the Golod-Shafarevich inequality (Chap. I, App. 2).

— The “résumé de cours” of my 1991-1992 lectures at the Collége de France on
Galois cohomology of k(T') (Chap. II, App.).

— The “résumé de cours” of my 1990-1991 lectures at the Colleége de France
on Galois cohomology of semisimple groups, and its relation with abelian
cohomology, especially in dimension 3 (Chap. III, App. 2).

The bibliography has been extended, open questions have been updated (as
far as possible) and several exercises have been added.

In order to facilitate references, the numbering of propositions, lemmas and
theorems has been kept as in the original 1964 text.

Jean-Pierre Serre
Harvard, Fall 1996




106 11.86 Algebraic number fields
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s (ks Pi(k, A) be the subgroup of t

H;, (ky,A) are ell defined. Let’ Pk, "

J;)}:)(;:ﬂ‘,)tgr[o]upi H i(l(cva) consisting of the families (1) such that Ty belongs to
€ ) .

H: (Ko, A)vfor almost all v € V. We have:

Proposition 21. The canonical homomorphism Hi(k,A) — [1H t(ky, A) maps

Hi(k, A) into Pi(k, A). | i
Indeed, every element z of H i(k, A) comes from an elemen}t1 y € 'fn((f% / ‘Isc, ::I)(i

where L/ k7 is a suitable finite Galois extension. I'f T d(i:notejcsh t teﬂlﬁ: o of

f k which are ramified in L, it is clear tha Cy

th?nsj‘;i(()li plz():eze(;ongs to Hi (ky,A) for all v ¢ T, from which the proposition

T1 v nr

follows. / |

. Hi(k,A) — P*(k, A) the homomorphism defined by

by fi
We shall denote by f. 18 of §5.5, we have:

the preceding proposition. By prop-
Pk, A) :H HY%(k,, A) (direct product),

P2k, A)=] ] H?(ky,4)  (direct sum).

. . 1 h _
As for the group P'(k, A), Tate suggests denoting it by [1H (kv, A), to empha
size that it is intermediate between a product anq a sum;1 e of the Hé(ku, A),
The groups P(k, 4), i = 3, are simply the (finite) ?r’? Iuc S oticular Wev},lave
’ imedean places of k. In par ,
runs over the set of real archime 1 s of |
vlg}ilzalze;l)) — 0 for ¢ > 3 if k is totally imaginary, or if A is of odd order.

ek'map fo \ inj iv te h roved (Cf §63> that the
Th is ob iously 1n]eCt1 €, and Tate has D : vh ;

i > 3, are bijecl.ive. In contrast, f1 and fo are not necessanly injective
—_ b

f'ia
(cf. Chap. 111, §4.7).

o, | ) t
Exegzieest w be an ultrametric place of the algebraic closure % of k. Show tha

the field %,, defined above is not complete [notice that .it "1s :hco;l;l;cﬁiblsehtr;o& ;i
closed subspaces without interior point, and apply Baire’s theo .
the completion of %, is algebraically closed.

2) Define the Pi(k, A) for negative i. Show that the sy

forms a cohomological functor in A.

stem of {P*(k,A)}icz

6.2 The finiteness theorem

The groups Pi(k, A) defined in the preceding § can

compact group topology (a special ¢

uct” due to Braconnier): one takes as

[oer Hi, (ky, A), where T runs over
v

For PO(k, A) = [T H (v, A), we get t

topology; for P2(k,A)=11H 2(ky, A), we get the discrete topology.

be given a natural locally
sse of the notion of a “restricted prod-
a neighborhood base of 0 the supgroups
the set of finite subsets of V' containing S.
he product topology, which makes P°(k, A)

compact group. For PYk,A)=T1H 1(ky,A) we get a locally compact group
a . ,
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Theorem 7. The canonical homomorphism

is a proper map, when H'(k, A) is given the discrete topology, and Pi(k, A) the
topology defined above ( i.e. the inverse image by f; of a compact subset of
Pl(k, A) is finite).

We shall only prove this theorem for 1 = 1. The case i = 0 is trivial, and the
case 1 > 2 follows from more precise results of Tate and Poitou which will be
given in the next section.

Let T be a subset of V containing S, and let Pi(k, A) be the subgroup
Py (k, A) formed by the elements (z,) such that z,, € H}, (k,, A) for all v ¢ T.
It is obvious that P}(k, A) is compact, and that conversely any compact subset
of P(k, A) is contained in one of the Pi(k, A). It will therefore be enough to
prove that the inverse image X7 of P}(k, A) in H'(k, A) is finite. By definition,
an element z € H'(k, A) belongs to X if and only if it is unramified outside 7.
Let us denote, as above, by K/k a finite Galois extension of k such that G acts
trivially on A, and let T’ be the set of places of K which extend the places of T'.
One can easily see that the image of X7 in H'(k, A) consists of the elements
unramified outside T since the kernel of Hl(k,A) — H'(K,A) is finite, we
are therefore led to showing that these elements are in finite number. So (up
to replacing k with K), we can assume that Gy acts trivially on A. Therefore
we have H!(k,A) = Hom(Gpg,A). If ¢ € Hom(Gy, A), denote the extension .
of k corresponding to the kernel of ¢ by k(ip); it is an abelian extension, and
¢ defines an isomorphism of the Galois group Gal(k(¢)/k) onto a subgroup
of A. To say that ¢ is unramified outside T means that the extension k(¢)/k
is unramified outside T'. Since the extensions k(p) are of bounded degree, the
finiteness theorem we want is a consequence of the following more precise result:

Lemma 6. Let k be an algebraic number field, and r an integer, and let T be a

finite set of places of k. There exist only finitely many extensions of degree r of
k which are unramified outside T

We reduce immediately to the case £k = Q. If E is an extension of Q of

" degree r unramified outside 7', the discriminant d of E over Q is only divisible

by prime numbers p belonging to 7. In addition, the exponent of p in d is bounded
(this follows, for instance, from the fact that there only exist a finite number of
extensions of the local field Q, which are of degree < r, cf. Chap. III, §4.2; see
also [145], p. 67). Therefore there are only finitely many possible discriminants d.
Since there exist only a finite number of number fields with a given discriminant
(Hermite’s theorem), this proves the lemma.

6.3 Statements of the theorems of Poitou and Tate

Retain the previous notations, and set A’ = Hom(A, G,,). The duality theorem
for the local case, together with prop. 19 in §5.5, implies that P°(k, A) is dual
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ith th
to P?(k, A") and P'(k,A) is dual to P(k, A") [one has to be careful with the

archimedean places — this works because of the convention made at the start of

§6.1.].
The following three theorem

proof:

s are more difficult. We just state them without

Theorem A. The kernel of fi : H'(k, A) — [1H(ky,A) and the kernel of
I H2(k,A") — 1 H2(ky, A") are duals of each other.

Note that this statement, applied to the moduk? A’, implies that the kernel
of f, is finite; the case i = 9 of th. 7 follows immediately from that.
Theorem B. Fori >3, the homomorphism

fi o Hi(k, A) — [ H'(kv, 4)

is an isomorphism.
[Of course, in the product, v runs through the real places of k, i.e. such that
k, = R.]
Theorem C. We have an ezact sequence:
0— H°%k,A) — 1 H(ky, A) — H?(k, A — H(k,A)

nite compact (compact) (discrete)
(finite) (compact) S

/ (loc. compact)
0« HOk,A")* « 11 H?(ky, A) < H?(k, A) — HY(k,A")*
(finite) (discrete) (discrete) (compact)

) L . OUS.
All the homomorphisms occurmng in this sequence are cOntinuo

(Here, G* is the dual — in Pontryagin’s sense — of the locally compact

G. 0 . .
gml’?hese? theorems are given in Tate’s Stockholm lecture [171], Wlt.h brief t.nnts
of proofs. Other proofs, due to Poitou, can be found in the 1963 Lille Seminar,

cf. [126]. See also Haberland [65] and Milne [116].

Bibliographic remarks for Chapter II

The situation is the same as for Chapter I: almost all the results are due to
Tate. The only paper published by Tate on this subject is his Stockholm lecture
[171], which contains lots of results (many more than it has been possible to
discuss here), but very few proofs. Fortunately, the proofs in the local case were

worked out by Lang [97]; and others can be found in a lecture by Douady at the
Bourbaki Seminar [47].

Let us also mention:

1) The notion of “cohomological dimension” (for the Galois group Gy, of a
field k) was introduced for the first time by Grothendieck, in connection with
his study of “Weil cohomology.” Prop. 11 in §4.2 is due to him.

2) Poitou obtained the results of §6 at about the same time as Tate. He
lectured on his proofs (which seem different from those of Tate) in the Lille
Seminar [126].

3) Poitou and Tate were both influenced by the results of Cassels on the
Galois cohomology of elliptic curves, cf. [26].




