The usual (real) octonions are defined by the Cayley-Dickson construction which starts with the quaternion algebra \mathbb{H} (which can itself be obtained from the complex numbers by using the same construction, or from the reals by using it twice) and constructs $\mathbb{O} = \mathbb{H} \oplus \mathbb{H}\ell$ subject to the multiplication rules (for $q, q', r, r' \in \mathbb{H}$) that (0) qq' is the same as in \mathbb{H} , (1) $q(r'\ell) = (r'q)\ell$, (2) $(r\ell)q' = (r\bar{q}')\ell$ and (3) $(r\ell)(r'\ell) = -\bar{r}'r$. All of which can be summarized as $(q+r\ell)(q'+r'\ell) = (qq'-\bar{r}'r) + (r'q+r\bar{q}')\ell$. (Mnemonic: if u is a quaternion of unit norm then $q \mapsto q$ and $r\ell \mapsto (ur)\ell$ defines an automorphism of the octonions: this highly constrains the formulæ.) Conjugation is given by $\overline{q+r\ell} = \overline{q} - r\ell$. Using the standard 1, *i*, *j*, *k* basis of quaternions, we get the following multiplication table:

<u> </u>		1									
×	1	i	j	k	ℓ	$i\ell$	$j\ell$	$k\ell$			
1	1	i	j	k	ℓ	$i\ell$	$j\ell$	$k\ell$			
i	i	-1	k	-j	$i\ell$	$-\ell$	$-k\ell$	$j\ell$			
j	j	-k	$^{-1}$	i	$j\ell$	$k\ell$	$-\ell$	$-i\ell$			
$k \mid$	k	j	-i	-1	$k\ell$	$-j\ell$	$i\ell$	$-\ell$			
ℓ	ℓ	$-i\ell$	$-j\ell$	$-k\ell$	-1	i	j	k			
$i\ell$	$i\ell$	ℓ	$-k\ell$	$j\ell$	-i	$^{-1}$	-k	j			
$j\ell$	$j\ell$	$k\ell$	ℓ	$-i\ell$	-j	k	$^{-1}$	-i			
$k\ell$	$k\ell$	$-j\ell$	$i\ell$	ℓ	-k	-j	i	-1			
(Line index comes first so $i \times i - k$)											

(Line index comes first, so $i \times j = k$.)

This can also be recovered from the rules that (A) for u in $\{i, j, k\}$, the units $u, \ell, u\ell$ obey the same rules as i, j, k (i.e., together with 1, they span a quaternion algebra oriented in this manner), and (B) whenever $u \neq v$ in $\{i, j, k\}$, the octonions u, v, ℓ anti-associate, in other words $u(v\ell) = -(uv)\ell$.

The quadratic form $z \mapsto z\bar{z}$ associated to the octonion usual algebra takes $c_1 + c_i i + c_j j + c_k k + c_l \ell + c_{il} i \ell + c_{jl} j \ell + c_{kl} k \ell$ to $c_1^2 + c_i^2 + c_j^2 + c_k^2 + c_l^2 + c_{jl}^2 + c_{kl}^2 + c_{kl}^2$.

To construct the split-octonions, we wish to replace ℓ by $\tilde{\ell}$ satisfying $\tilde{\ell}^2 = 1$. One way to do this is to complexify \mathbb{O} and put $\tilde{\ell} = I\ell$ where I is square root of -1 obtained by complexifying. Or one can remove the minus sign in the Cayley-Dickson construction: $(q + r\tilde{\ell})(q' + r'\tilde{\ell}) = (qq' + \bar{r}'r) + (r'q + r\bar{q}')\tilde{\ell}$. Now we have: (A) for u in $\{i, j, k\}$, the units $u, \tilde{\ell}, u\tilde{\ell}$ together with 1 span a split-quaternion algebra oriented in this manner (viz., $u^2 = -1$ but $\tilde{\ell}^2 = (u\tilde{\ell})^2 = 1$), and (B) whenever $u \neq v$ in $\{i, j, k\}$, the split-octonions $u, v, \tilde{\ell}$ anti-associate, in other words $u(v\tilde{\ell}) = -(uv)\tilde{\ell}$.

The quadratic form $z \mapsto z\bar{z}$ associated to the split-octonion usual algebra takes $c_1 + c_i i + c_j j + c_k k + c_l \tilde{\ell} + c_{il} i \tilde{\ell} + c_{jl} j \tilde{\ell} + c_{kl} k \tilde{\ell}$

to $c_1^2 + c_i^2 + c_j^2 + c_k^2 - c_l^2 - c_{il}^2 - c_{kl}^2$. This description of the split-octonions, however, does not work in characteristic 2. To remedy this, we introduce a different basis, namely $e_0^{\pm} = \frac{1}{2}(1 \pm \tilde{\ell})$ and $e_1^{\pm} = \frac{1}{2}(i \pm i\tilde{\ell})$ and $e_2^{\pm} = \frac{1}{2}(j \pm j\tilde{\ell})$ and $e_3^{\pm} = \frac{1}{2}(k \pm k\tilde{\ell})$. Then we get the following multiplication table:

×	e_0^+	e_0^-	e_1^+	e_1^-	e_2^+	e_2^-	e_3^+	e_3^-
e_0^+	e_0^+	0	0	e_1^-	0	e_2^-	0	e_3^-
e_0^-	0	e_0^-	e_1^+	0	e_2^+	0	e_3^+	0
e_1^+	e_1^+	0	0	$-e_{0}^{-}$	e_3^-	0	$-e_{2}^{-}$	0
e_1^-	0	e_1^-	$ -e_0^+$	0	0	e_3^+	0	$-e_{2}^{+}$
e_2^+	e_2^+	0	$-e_{3}^{-}$	0	0	$-e_{0}^{-}$	e_1^-	0
e_2^-	0	e_2^-	0	$-e_{3}^{+}$	$-e_{0}^{+}$	0	0	e_1^+
e_3^+	e_3^+	0	e_2^-	0	$-e_{1}^{-}$	0	0	$-e_{0}^{-}$
e_3^-	0	e_3^-	0	e_2^+	0	$-e_{1}^{+}$	$-e_0^+$	0

(Along with the unit $1 = e_0^+ + e_0^-$, and conjugation taking e_0^{\pm} to e_0^{\mp} and e_n^{\pm} to $-e_n^{\pm}$ for $n \in \{1, 2, 3\}$.) Now the quadratic form takes $c_{0\sharp} e_0^+ + c_{0\flat} e_0^- + c_{1\sharp} e_1^+ + c_{1\flat} e_1^- + c_{2\sharp} e_2^+ + c_{2\flat} e_2^- + c_{3\sharp} e_3^+ + c_{3\flat} e_3^-$ to $c_{0\sharp} c_{0\flat} + c_{1\sharp} c_{1\flat} + c_{2\sharp} e_2^+ + c_{2\flat} e_2^- + c_{3\sharp} e_3^+ + c_{3\flat} e_3^-$ to $c_{0\sharp} c_{0\flat} + c_{1\sharp} c_{1\flat} + c_{2\sharp} e_2^+ + c_{2\flat} e_2^- + c_{3\sharp} e_3^+ + c_{3\flat} e_3^-$ to $c_{0\sharp} c_{0\flat} + c_{1\sharp} c_{1\flat} + c_{2\sharp} e_2^- + c_{2\sharp} e_2^- + c_{3\sharp} e_3^+ + c_{3\flat} e_3^-$ to $c_{0\sharp} c_{0\flat} + c_{1\sharp} c_{1\flat} + c_{2\sharp} e_2^- + c_{2\sharp} e_2^- + c_{3\sharp} e_3^+ + c_{3\flat} e_3^-$ to $c_{0\sharp} c_{0\flat} + c_{1\sharp} c_{1\flat} + c_{2\sharp} e_2^- + c_{2\sharp} e_2^- + c_{3\sharp} e_3^+ + c_{3\flat} e_3^-$ to $c_{0\sharp} c_{0\flat} + c_{1\sharp} c_{1\flat} + c_{2\sharp} e_2^- + c_{2\sharp} e_2^- + c_{3\sharp} e_3^+ + c_{3\flat} e_3^-$ to $c_{0\sharp} c_{0\flat} + c_{1\sharp} c_{1\flat} + c_{2\sharp} e_2^- + c_{2\sharp} e_2^- + c_{3\sharp} e_3^- + c_{3\flat} e_3^-$ to $c_{0\sharp} c_{0\flat} + c_{1\sharp} c_{1\flat} + c_{2\sharp} e_2^- + c_{2\sharp} e_2^- + c_{3\sharp} e_3^- + c_{3\flat} e_3^-$ to $c_{0\sharp} c_{0\flat} + c_{1\sharp} c_{1\flat} + c_{2\sharp} e_2^- + c_{2\sharp} e_2^- + c_{3\sharp} e_3^-$ to $c_{0\sharp} c_{0\flat} + c_{1\sharp} c_{1\flat} + c_{2\sharp} e_2^- + c_{2\sharp} e_2^$ $c_{2\sharp}c_{2\flat}+c_{3\sharp}c_{3\flat}.$

We can define derivations $\delta_1, \delta_2, \delta_3, \rho_1^{\pm}, \rho_2^{\pm}, \rho_3^{\pm}, \lambda_1^{\pm}, \lambda_2^{\pm}, \lambda_3^{\pm}$ as follows:

	$ e_0^+$	e_0^-	e_1^+	e_1^-	e_2^+	e_2^-	e_3^+	e_3^-
δ_1	0	0	0	0	e_2^+	$-e_{2}^{-}$	$-e_{3}^{+}$	e_3^-
δ_2	0	0	$-e_{1}^{+}$	e_1^-	0	0	e_3^+	$-e_{3}^{-}$
δ_3	0	0	e_1^+	$-e_1^-$	$-e_{2}^{+}$	e_2^-	0	0
ρ_1^+	$ -e_1^+$	e_1^+	0	$-e_0^+ + e_0^-$	e_3^-	0	$-e_{2}^{-}$	0
ρ_1^-	e_1^-	$-e_1^-$	$e_0^+ - e_0^-$	0	0	e_3^+	0	$-e_{2}^{+}$
ρ_2^+	$ -e_2^+$	e_2^+	$-e_{3}^{-}$	0	0	$-e_0^+ + e_0^-$	e_1^-	0
ρ_2^-	e_2^-	$-e_{2}^{-}$	0	$-e_{3}^{+}$	$e_0^+ - e_0^-$	0	0	e_1^+
ρ_3^+	$ -e_{3}^{+}$	e_3^+	e_2^-	0	$-e_1^-$	0	0	$-e_0^+ + e_0^-$
ρ_3^-	e_3^-	$-e_{3}^{-}$	0	e_2^+	0	$-e_{1}^{+}$	$e_0^+ - e_0^-$	0
λ_1^+	0	0	0	0	0	e_3^-	$-e_{2}^{+}$	0
λ_1^-	0	0	0	0	e_3^+	0	0	$-e_{2}^{-}$
λ_2^+	0	0	$-e_{3}^{+}$	0	0	0	0	e_1^-
λ_2^-	0	0	0	$-e_{3}^{-}$	0	0	e_1^+	0
λ_3^+	0	0	0	e_2^-	$-e_{1}^{+}$	0	0	0
λ_3^-	0	0	e_2^+	0	0	$-e_{1}^{-}$	0	0

Evidently $\delta_1 + \delta_2 + \delta_3 = 0$ — all others are linearly independent and span the 14-dimensional Lie algebra \mathfrak{g}_2 of derivations of the split-octonions.

Lie bracket table:

		Cartan		Short roots						Long roots					
[,]	δ_1	δ_2	δ_3	ρ_1^+	ρ_1^-	ρ_2^+	ρ_2^-	ρ_3^+	ρ_3^-	λ_1^+	λ_1^-	$ \lambda_2^+$	λ_2^-	λ_3^+	λ_3^-
δ_1	0	0	0	0	0	ρ_2^+	$-\rho_{2}^{-}$	$-\rho_{3}^{+}$	ρ_3^-	$2\lambda_1^+$	$-2\lambda_1^-$	$-\lambda_2^+$	λ_2^-	$-\lambda_3^+$	λ_3^-
δ_2	0	0	0	$-\rho_{1}^{+}$	ρ_1^-	0	0	ρ_3^+	$-\rho_3^-$	$-\lambda_1^+$	λ_1^-	$2\lambda_2^+$	$-2\lambda_2^-$	$\left -\lambda_{3}^{+}\right $	λ_3^-
δ_3	0	0	0	ρ_1^+	$-\rho_1^-$	$-\rho_{2}^{+}$	ρ_2^-	0	0	$-\lambda_1^+$	λ_1^-	$ -\lambda_2^+ $	λ_2^-	$2\lambda_3^+$	$-2\lambda_3^-$
ρ_1^+	0	ρ_1^+	$- ho_1^+$	0	$\delta_2 - \delta_3$	$-2\rho_{3}^{-}$	$3\lambda_3^+$	$2\rho_2^-$	$-3\lambda_2^-$	0	0	ρ_3^+	0	0	$-\rho_{2}^{+}$
ρ_1^-	0	$-\rho_1^-$	ρ_1^-	$-\delta_2 + \delta_3$	0	$3\lambda_3^-$	$-2\rho_{3}^{+}$	$-3\lambda_2^+$	$2\rho_{2}^{+}$	0	0	0	ρ_3^-	$-\rho_2^-$	0
ρ_2^+	$-\rho_{2}^{+}$	0	ρ_2^+	$2\rho_{3}^{-}$	$-3\lambda_3^-$	0	$-\delta_1 + \delta_3$	$-2\rho_{1}^{-}$	$3\lambda_1^+$	0	$- ho_3^+$	0	0	ρ_1^+	0
ρ_2^-	ρ_2^-	0	$-\rho_2^-$	$-3\lambda_3^+$	$2\rho_{3}^{+}$	$\delta_1 - \delta_3$	0	$3\lambda_1^-$	$-2\rho_{1}^{+}$	$-\rho_3^-$	0	0	0	0	ρ_1^-
ρ_3^+	ρ_3^+	$-\rho_{3}^{+}$	0	$-2\rho_{2}^{-}$	$3\lambda_2^+$	$2\rho_{1}^{-}$	$-3\lambda_1^-$	0	$\delta_1 - \delta_2$	ρ_2^+	0	0	$-\rho_1^+$	0	0
ρ_3^-	$-\rho_{3}^{-}$	ρ_3^-	0	$3\lambda_2^-$	$-2\rho_{2}^{+}$	$-3\lambda_1^+$	$2\rho_{1}^{+}$	$-\delta_1 + \delta_2$	0	0	ρ_2^-	$-\rho_1^-$	0	0	0
λ_1^+	$-2\lambda_1^+$	λ_1^+	λ_1^+	0	0	0	ρ_3^-	$-\rho_2^+$	0	0	$-\delta_1$	λ_3^-	0	$-\lambda_2^-$	0
λ_1^-	$2\lambda_1^-$	$-\lambda_1^-$	$-\lambda_1^-$	0	0	ρ_3^+	0	0	$-\rho_2^-$	δ_1	0	0	λ_3^+	0	$-\lambda_2^+$
λ_2^+	λ_2^+	$-2\lambda_2^+$	λ_2^+	$-\rho_{3}^{+}$	0	0	0	0	ρ_1^-	$-\lambda_3^-$	0	0	$-\delta_2$	λ_1^-	0
λ_2^-	$-\lambda_2^-$	$2\lambda_2^-$	$-\lambda_2^-$	0	$-\rho_3^-$	0	0	ρ_1^+	0	0	$-\lambda_3^+$	δ_2	0	0	λ_1^+
λ_3^+	λ_3^+	λ_3^+	$-2\lambda_3^+$	0	ρ_2^-	$-\rho_{1}^{+}$	0	0	0	λ_2^-	0	$\left -\lambda_{1}^{-}\right $	0	0	$-\delta_3$
λ_2^{-}	$-\lambda_{2}^{-}$	$-\lambda_{2}^{-}$	$2\lambda_2^-$	ρ_{0}^{+}	0	0	$-\rho_1^-$	0	0	0	λ_{0}^{+}	0	$-\lambda_1^+$	δ3	0

 $\frac{\lambda_3 \| -\lambda_3 - \lambda_3 - \lambda_3 - \lambda_3 - \lambda_3 - \lambda_2}{\text{With respect to the Cartan algebra } \mathfrak{h} := \langle \delta_1, \delta_2, \delta_3 \rangle, \text{ the root system is as follows:}$

 λ_1^- (Note that $e_1^\pm, e_2^\pm, e_3^\pm$ are weight vectors having the same weights as the short roots $\rho_1^\pm, \rho_2^\pm, \rho_3^\pm$.)

If L_x and R_x stand for left- and right-multiplication by the split-octonion x and we let $D_{x,y} = [L_x, L_y] + [L_x, R_y] + [R_x, R_y]$, then this defines a derivation for all x, y, as given by the following table:

$x \downarrow D_{x,y} \ y \rightarrow$	e_0^+	e_0^-	e_1^+	e_1^-	e_2^+	e_2^-	e_3^+	e_3^-
e_0^+	0	0	ρ_1^-	$-\rho_1^+$	ρ_2^-	$-\rho_{2}^{+}$	ρ_3^-	$- ho_3^+$
e_0^-	0	0	$-\rho_1^-$	$ ho_1^+$	$-\rho_2^-$	ρ_2^+	$-\rho_3^-$	$ ho_3^+$
e_1^+	$-\rho_{1}^{-}$	ρ_1^-	0	$-\delta_2 + \delta_3$	$ ho_3^+$	$3\lambda_3^-$	$-\rho_{2}^{+}$	$-3\lambda_2^+$
e_1^-	ρ_1^+	$- ho_1^+$	$\delta_2 - \delta_3$	0	$3\lambda_3^+$	ρ_3^-	$-3\lambda_2^-$	$-\rho_2^-$
e_2^+	$-\rho_{2}^{-}$	ρ_2^-	$-\rho_{3}^{+}$	$-3\lambda_3^+$	0	$\delta_1 - \delta_3$	ρ_1^+	$3\lambda_1^-$
e_2^-	ρ_2^+	$-\rho_2^+$	$-3\lambda_3^-$	$- ho_3^-$	$-\delta_1 + \delta_3$	0	$ 3\lambda_1^+$	ρ_1^-
e_3^+	$-\rho_3^-$	ρ_3^-	ρ_2^+	$3\lambda_2^-$	$- ho_1^+$	$-3\lambda_1^+$	0	$-\delta_1 + \delta_2$
e_3^-	ρ_3^+	$-\rho_3^+$	$ 3\lambda_2^+$	ρ_2^-	$-3\lambda_1^-$	$-\rho_1^-$	$\delta_1 - \delta_2$	0