Comments on Comment vulgariser la géométrie riemannienne ?

Ruxor (2012-09-08T10:29:03Z)

@bidibulle: J'allais dire qu'il écrit n'importe quoi, mais en fait ce n'est pas ça, c'est juste qu'il utilise une terminologie extrêmement douteuse : ce que Greg Egan appelle « géométrie riemannienne », c'est la physique dans un espace-temps euclidien, ou éventuellement courbe mais de signature euclidienne (par opposition à lorentzienne). Ce serait beaucoup plus clair s'il appelait ça « physique euclidienne ». En tout cas, ça n'a pas spécialement de rapport avec ce que je racontais (même s'il y a une intersection non nulle).

bidibulle (2012-09-07T23:26:51Z)

Greg Egan a des choses amusantes à dire sur la géométrie riemanienne…

<URL: http://gregegan.customer.netspace.net.au/ORTHOGONAL/02/Motion.html#LR >

Imohtep (2012-08-22T08:14:48Z)

@Ruxor: merci pour la précision ! Je vais essayer de parcourir un peu le web à la recherche de davantage de précisions et je reviendrai éclairer le fil de commentaires si j'y trouve mon bonheur :-)

Ruxor (2012-08-21T21:33:00Z)

@Imohtep: Je crois que l'idée générale est que la torsion de l'espace-temps va donner l'impression que l'espace-temps est en rotation (i.e., si on se fixe avec un gyroscope, on voit les étoiles qui tournent). Comme dans l'effet Lense-Thirring, sauf que la source est différente. Mais je ne suis pas très sûr.

Imohtep (2012-08-21T21:13:39Z)

Merci beaucoup pour ce "petit" billet de vulgarisation vraiment très enrichissant !
J'ai juste une question qui concerne la notion de torsion. Même si je vois à peu près à quoi cela peut correspondre d'un point de vue mathématique, j'ai dû mal à faire le rapprochement avec une interprétation physique de la torsion dans le cadre de la relativité générale. David, peux-tu nous écrire un billet de vulgarisation sur la théorie d'Einstein-Cartan ? ;-)

Typhon (2012-08-21T09:25:59Z)

Personnellement, j'ai tendance à penser que l'adjectif "zéroïème" est totalement superflu et que 0 est le premier nombre naturel, pas le "zéroïème".

Ceci dit, le mot est attesté depuis près d'un siècle en français, et n'est pas spécialement confiné aux matheux (à moins d'y inclure tout les lecteurs d'Asimov).

Régis (2012-08-20T08:26:24Z)

Il n,en reste pas moins que certain sujet promis depuis des mois est en passe de devenir l'Arlesienne de ce blog.

Bobdémaths (2012-08-20T07:40:21Z)

Merci David, comme toujours c'est de l'excellente vulgarisation comme on l'aime.

®om (2012-08-19T20:49:46Z)

Merci beaucoup pour ce billet.

J'adore tout ce qui touche à la relativité restreinte/générale, mais je n'en lis que des vulgarisations (très intéressantes) qui évitent la partie mathématique.

J'aimerais bien comprendre un peu mieux la partie mathématique (j'ai vu des trucs sur Riemann en école d'ingé, mais j'étais plus passionné par l'informatique que par les maths, donc je n'ai rien compris). Ta vulgarisation est peut-être un bon départ ;-)

Fred le marin (2012-08-19T16:28:12Z)

La Relativité Générale n'a pas encore cent ans !

Elle est pourtant incontournable à présent (étude des différents types de trous noirs, lentilles et mirages gravitationnels, applications au GPS…) et occupe le podium de la Physique Contemporaine avec la Mécanique Quantique.
Ruxor, je ne comprends pas comment tu as pu produire une synthèse explicative pareille en plein mois d'Août, si chaud.
Bravo ! (mais avons-nous tous compris cette synthèse elle-même ? Beaucoup de notions, de références : très lentes à digérer).
Albert Einstein, quant à lui, récolte encore la gloire, et ce, même de "la plus grande erreur de sa vie" : la Constante Cosmologique gagne un regain d'intérêt depuis maintenant presque deux décennies.
Il l'avait introduite par émotion : l'idée d'un Univers statique lui était chère.
D'autant plus glorieux, en fait, que l'on n'explique toujours pas (actuellement) la nature de cette énergie sombre (à grande échelle et qui évoluerait sur de grandes échelles de temps).
Mais il me semble que l'illustre David Hilbert avait aussi la solution au problème de la gravitation (et sa théorie) et qu'il disait que les Mathématiques étaient bien trop sérieuses pour l'usage des Physiciens !
Beau travail de mise à portée en tout cas : on évalue mieux la profondeur du Gouffre Universel.
C'est littéralement effrayant (et l'on sait qu'il y a plus à grande échelle).
Déjà, avec Newton, le temps s'écoulait inexorablement, rigoureusement et sans pitié aucune envers les choses matérielles.
Maintenant, spatialement, tout s'accélère vers l'infini (et au delà)…
C'est complètement Wizzzzzzzzzz !
Merci à Toi.

ooten (2012-08-19T11:57:57Z)

C'est sympa, c'est de la bonne vulgarisation, il faut se rendre compte du travail qu'il y a là derière. Car il n'y pas de compréhension de telles mathématiques sans un minimum de travail et d'efforts.


You can post a comment using the following fields:
Name or nick (mandatory):
Web site URL (optional):
Email address (optional, will not appear):
Identifier phrase (optional, see below):
Attempt to remember the values above?
The comment itself (mandatory):

Optional message for moderator (hidden to others):

Spam protection: please enter below the following signs in reverse order: 58e179


Recent comments