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In all that follows,p will stand for a prime number.N, Z, Q, R andC are
the sets of respectively the natural numbers (i.e. non negative integers), integers,
rational numbers, reals and complex numbers.

In some — but not all — of what follows, we assume the reader is familiar
with the notions of “group”, “ring” and “field”. We assume throughout that the
reader knows the basic facts about theb-adic representation (i.e. representation in
baseb) of integers and reals

Note: I did not aim here at writing a completely rigorous document, but only
an easily understandable introduction for those who do not have any idea of what
ap-adic is.

1 First definition

We will call p-adic digit a natural number between0 andp − 1 (inclusive). A
p-adic integeris by definition a sequence(ai)i∈N of p-adic digits. We write this
conventionally as

· · · ai · · · a2 a1 a0

(that is, theai are written from left to right).
If n is a natural number, and

n = ak−1 ak−2 · · · a1 a0

is its p-adic representation (in other wordsn =
∑k−1

i=0 aip
i with eachai a p-adic

digit) then we identifyn with thep-adic integer(ai) with ai = 0 if i ≥ k. This
means that natural numbers are exactly the same thing asp-adic integer only a
finite number of whose digits are not0. Also note that0 is thep-adic integer all of
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whose digits are0, and that1 is thep-adic integer all of whose digits are0 except
the right-most one (digit0) which is1.

If α = (ai) andβ = (bi) are twop-adic integers, we will now define their
sum. To that effect, we define by induction a sequence(ci) of p-adic digits and a
squence(εi) of elements of{0, 1} (the “carries”) as follows:

• ε0 is 0.

• ci is ai + bi + εi or ai + bi + εi − p according as which of these two is a
p-adic digit (in other words, is between0 andp − 1). In the former case,
εi+1 = 0 and in the latter,εi+1 = 1.

Under those circumstances, we letα+ β = (ci) and we callα+ β the sum of
α andβ. Note that the rules described above areexactlythe rules used for adding
natural numbers inp-adic representation. In particular, ifα andβ turn out to be
natural numbers, then their sum as ap-adic integer is no different from their sum
as a natural number. So2 + 2 = 4 remains valid (whateverp is — but if p = 2 it
would be written· · · 010 + · · · 010 = · · · 100).

Here is an example of a7-adic addition:

· · · 2 5 1 4 1 3
+ · · · 1 2 1 1 0 2
· · · 4 0 2 5 1 5

This addition ofp-adic integers is associative, commutative, and verifiesα +
0 = α for all α (recall that0 is thep-adic integer all of whose digits are0).

Subtraction ofp-adic integers is also performed in exactly the same way as
that of natural numbers inp-adic form. Since everybody reading this is assumed
to have gone through first and second grade, we will not elaborate further:-) .

Note that this subtraction scheme gives us the negative integers readily: for
example, subtract1 from 0 (in the7-adics) :

· · · 0 0 0 0 0 0
− · · · 0 0 0 0 0 1
· · · 6 6 6 6 6 6

(each column borrows a1 from the next one on the left). So−1 = · · · 666 as
7-adics. More generally,−1 is thep-adic all of whose digits arep− 1,−2 has all
of its digits equal top− 1 except the right-most which isp− 2, and so on. In fact,
(strictly) negative integers correspond exactly to thosep-adics all of whose digits
except a finite number are equal top− 1.
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It can then be verified thatp-adic integers, under addition, form an abelian
group.

We now proceed to describe multiplication. First note that ifn is a natural
number andα ap-adic integer, then we have a naturally definednα = α+ · · ·+α
(n times, with0α = 0 of course). Ifn is negative, we let, of course,nα =
−((−n)α). This limited multiplication satisfies some obvious equalities, such as
(m + n)α = mα + nα, n(α + β) = nα + nβ, m(nα) = (mn)α, and so on (for
those with some background in algebra, this is not new: any abelian group is a
Z-module). Note also that multiplying byp = · · · 0010 is the same as adding a0
on the right.

Multiplying two p-adic integerson the other hand requires some more work.
To do that, we note that ifα0, α1, α2, . . . arep-adic integers, withα1 ending in (at
least) one zero,α2 ending in (at least) two zeroes, and so on, then we can define
the sum of all theαi, even though they are not finite in number. Indeed, the last
digit of the sum is just the last digit ofα0 (sinceα1, α2, . . . all end in zero), the
second-last is the second-last digit ofα0 + α1 (becauseα2, α3, . . . all end in00),
and so on: every digit of the (infinite) sum can be calculated with just a finite sum.
Now we suppose that we want to multiplyα andβ = (bi) two p-adic integers. We
then letα0 = b0α (we know how to define this sinceb0 is just a natural number),
α1 = pb1α, and so on:αi = pibiα. Sinceαi is ap-adic integer multiplied bypi, it
ends ini zeroes, and therefore the sum of all theαi can be defined.

This procedure may sound complicated, but, once again, it is still exactly the
same as we have all learned in grade school to multiply two natural numbers. Here
is an example of a7-adic multiplication:

· · · 2 5 1 4 1 3
× · · · 1 2 1 1 0 2
· · · 5 3 3 1 2 6

+ · · · 0 0 0 0 0
+ · · · 1 4 1 3
+ · · · 4 1 3
+ · · · 2 6
+ · · · 3
· · · 3 1 0 4 2 6

(of course, it is relatively likely that I should have made some mistake some-
where).

We now have a set ofp-adic integers, which we will callZp, with two binary
operations on it, addition and multiplication. It can be checked — but we will
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not do it — thatZp is then a commutative ring (for those who don’t know what
that means, it means that addition is associative and commutative, that zero exists
and satisfies the properties we wish it to satisfy, that multiplication is associative
and commutative, and distributive over addition, and that1 exists and satisfies the
properties we wish it to satisfy (namely1α = α for all α)).

Now, how about division? First, the bad news: division ofp-adics isnot per-
formed in the same way as division of integers or reals. In fact, it can’t always be
performed. For example,1/p has no meaning as ap-adic integer — that is, the
equationpα = 1 has no solution — since multiplying ap-adic integer byp always
gives ap-adic integer ending in0. There is nothing really surprising here:1/p
can’t be performed in the integers either.

However, what is mildly surprising is that division byp is essentially the only
division which cannot be performed in thep-adic integers. This statement (in
technical terms “Zp is a local ring”) will not be made precise for the moment;
however, we give a concrete example. Supposep is odd (in other words,p 6= 2).
And letα be thep-adic integer all of whose digits are equal to(p − 1)/2 except
the last one which is(p + 1)/2. By performing2α (in other words,α + α), it is
clear that every digit will be zero except the last one which is1. So2α = 1, in
other wordsα = 1/2.

For example, with our usual example ofp = 7 we show that the number
α = · · · 333334 is the number “one half” by adding it to itself:

· · · 3 3 3 3 3 4
+ · · · 3 3 3 3 3 4
· · · 0 0 0 0 0 1

Thus, in the7-adic integers, “one half” is aninteger. And so are “one third”
(· · · 44445), “one quarter” (· · · 1515152), “one fifth” (· · · 541254125413), “one
sixth” (· · · 55556), “one eighth” (· · · 0606061), “one ninth” (· · · 3613613614), “one
tenth” (· · · 462046205), “one eleventh” (· · · 162355043116235504312) and so on.
But “one seventh”, “one fourtneenth” and so on, are not7-adic integers.

We now give a way to calculate the inverse (and therefore the quotient) of
p-adic integers. Supposeα is ap-adic integer ending in zero (such numbers are
calledsmall for reasons we will describe later). Thenαi ends in at leasti zeros.
Therefore, as we have seen, we can calculateβ = 1 + α + α2 + · · · even though
it has an infinite number of terms. Multiplying this by(1− α) and expanding out
(we shall admit that all the appropriate properties of addition are preserved when
dealing with infinite sums) we find that(1−α)β = 1−α+α−α2 +α2−· · · = 1.
Therefore we are able to calculate the inverse of1 − α, which may be, as is easy
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to see, anyp-adic integer ending in1. To summarize:p-adic integers ending in0
have no inverse; those ending in1 can be inverted with the formula described
above. To inverse ap-adic integerα ending in a digitd other than0 and1, we
find the (unique) digitf such thatdf is congruent to1 mod p (i.e. is equal to1
plus a multiple ofp). In that case,fα ends in1 so can be inverted, and we then
have1/α = f/(fα). To find f for small values ofp, I have no better advice
than checking successively all digits. Perhaps computer scientists can suggest an
altogether faster method for invertingp-adics.

Up to now we have only describedp-adic integers, and notp-adic numbers.
We now proceed to define the latter. The relation between the set (ring)Zp of
p-adic integers and the set (field)Qp of p-adic numbers is the same as between the
set (ring)Z of integers and the set (field)Q of rationals. Namely, the second is
obtained by taking quotients of an element of the first by a non zero element of the
same — or, which amounts to the same, by adding new inverses to some elements
of the first. In the case of the rationals, an inverse has to be added to every prime
numberp. In our case, however, we are fortunate, and adding an inverse top only
will suit our needs. We therefore proceed to do that.

We now define ap-adic numberto be aZ-indexed sequence(ai)i∈Z of p-adic
digits such thatai = 0 for sufficiently smalli (explicitly: there existsi0 ∈ Z such
thatai = 0 for i < i0). Such numbers are also written from right to left, with a
“p-adic dot” after decimal0. So our condition says: there are a finite number of
non zero digits on the right of thep-adic point. We considerp-adic integers asp-
adic numbers by identifying(ai)i∈N with (ai)i∈Z whereai = 0 for i < 0, in other
words by adding zeros to the right of the point. Ifα = (ai) is a p-adic number
such thatai = 0 for i < i0 (and we can certainly supposei0 ≤ 0 so we do) then
thep-adic numberα′ obtained by shifting every decimal ofα by−i0 places to the
left is ap-adic integer. We writeα = α′pi0 (or α = α′/p−i0).

p-adic numbers can then be added as follows: ifα = α′pi with α′ a p-adic
intger, andβ = β′pj ditto, and suppose moreoveri ≤ j ≤ 0, then we letα +
β = (α′ + β′pj−i)pi — note thatα′ + β′pj−i is indeed ap-adic integer. This is
just a complicated way of saying that we add as usual, starting from the furthest
(rightmost) column where there is a non zero digit. Multiplication is easier: under
the same notations (except that the conditioni ≤ j is no longer necessary) we let
αβ = α′β′pi+j. This says that we multiply “as usual”, ignoring thep-adic dot,
and then we place the dot in the “obvious” place where it should be.

The setQp of p-adic numbers, with this addition and multiplication, forms a
field — in other words, all the properties of a ring are satisfied, and moreover
every nonzero element has a multiplicative inverse.
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2 Second definition — topology and metric

If n is an integer, recall that itsp-adic valuation is the exponent of the greatest
power ofp that dividesn. It is written vp(n). By convention,vp(0) = ∞. If
r = a/b is a rational, itsp-adic valuation is defined asvp(r) = vp(a)− vp(b).

For example, the7-adic valuation of7 is 1. That of14 is also1, as are those of
21, 28, 35, 42 or 56. The7-adic valuation of49, on the other hand, is2, as is that
of 98. And the7-adic valuation of343 is 3. The2-adic valuation of an integer is
0 iff it is odd, it is at least1 iff it is even, at least2 iff the integer is multiple by4,
and so on. The7-adic valuation of1/7 is−1, and so are those of3/7, 1/14, 5/56.
The7-adic valuation of1/2 or 8/3 is 0. The7-adic valuation of7/3 or 14/5 is 1.
The7-adic valuation of48/49 is−2.

We now define thep-adic absolute valueof a rational numberr to be|r|p =
p−vp(r). For example,|p|p = 1

p
, |1|p = 1, |2p|p = 1

p
if p is odd, and| 1

p2 | = p2.
We then define thep-adic distance between two rationalsr, r′ to be|r′ − r|p.

It is relatively straightforward to check that this indeed defines a distance on the
rationals. The rationals are not complete for that distance, in other words, every
Cauchy sequence is not convergent. It is possible to define thep-adic numbers
as the completion of thep-adic rationals under this metric. General theorems on
topological fields ensure that this defines a field, the field ofp-adic numbers.

To make the equivalence of both definitions clearer, we say that the valuation
of a p-adic number(ai) is the smallesti0 (possibly positive) such thatai = 0 for
all i < i0. With this terminology, ap-adic integer is exactly ap-adic number with
non negative valuation. And a smallp-adic integer (one which ends in0) is one
whose valuation is (strictly) positive. It is not hard to check that this definition
coincides with the aforementioned one for integers, hence for rationals.

As for rationals, we define thep-adic absolute value and distance by|α|p =
p−vp(α). Note that thep-adic absolute value of ap-adic number isreal number (it
is also ap-adic, and in fact a rational, but ought not be considered as such). Then
Qp is a metric space, and the two following facts can be proven:

• Qp is complete.

• Q is dense inQp.

Also note thatZp is the unit ball with center0 in Qp.
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