

$$\phi_{1}(\phi_{1}(\phi_{3}(0)+1)) = \psi(\Omega^{2} + \psi(\Omega^{2}+1))$$

$$\phi_2(\phi_3(0)+1)=\psi(\Omega^2+\Omega)$$

$$\phi_\omega(1)=\psi(\Omega^\omega 2)$$

$$\phi_{\varepsilon_0}(0) = \phi_{\phi_1(0)}(0) = \psi(\Omega^{\psi(0)})$$

$$\phi_{\varepsilon_0}(1) = \phi_{\phi_1(0)}(1) = \psi(\Omega^{\psi(0)}2)$$

 $\phi_{\phi_1(0)}(\phi_{\phi_1(0)}(0)) = \psi(\Omega^{\psi(0)}\psi(\Omega^{\psi(0)}))$

$$\phi_{\varepsilon_0+1}(0) = \phi_{\phi_1(0)+1}(0) = \psi(\Omega^{\psi(0)+1})$$

$$\phi_{\varepsilon_1}(0) = \phi_{\phi_1(1)}(0) = \psi(\Omega^{\psi(1)})$$

 $\phi(\phi(1,0,0)+1,0)=\psi(\Omega^{\Omega}+\Omega^{\psi(\Omega^{\Omega})+1})$

 $\phi(\phi(1,0,0),\phi(\phi(1,0,0),\phi(1,0,0))) = \psi(\Omega^\Omega + \Omega^{\psi(\Omega^\Omega)} \psi(\Omega^\Omega + \Omega^{\psi(\Omega^\Omega)} \psi(\Omega^\Omega)))$

 $\Gamma_1 + 1$

 $\Gamma_2 = \phi(1,0,2) = \psi(\Omega^{\Omega}3)$

$$\Gamma_{\omega} = \phi(1, 0, \omega) = \psi(\Omega^{\Omega}\omega)$$

 $\Gamma_{\omega} = \phi(1,0,\omega) = \psi(\Omega^{\Omega}\omega) \qquad \qquad \Gamma_{\Gamma_0} = \phi(1,0,\phi(1,0,0)) = \psi(\Omega^{\Omega}\psi(\Omega^{\Omega})) \qquad \qquad \Gamma_{\Gamma_{\Gamma_0}} = \phi(1,0,\phi(1,0,\phi(1,0,0))) = \psi(\Omega^{\Omega}\psi(\Omega^{\Omega}))$

$$\phi(1,\omega,0)=\psi(\Omega^{\Omega+\omega})$$

$$\phi(2,1,0) = \psi(\Omega^{\Omega 2 + 1})$$

 $\phi(3,0,0) = \psi(\Omega^{\Omega 3})$

$$\phi(\omega, 0, 0) = \psi(\Omega^{\Omega\omega})$$

$$\phi(\omega,0,0)^{\phi(\omega,0,0)}$$

$$\phi(1,\phi(\omega,0,0)+1) = \psi(\Omega^{\Omega\omega}+1)$$

$$\phi(2,\phi(\omega,0,0)+1) = \psi(\Omega^{\Omega\omega} + \Omega)$$

 $\phi(\phi_1(0), \phi(\omega, 0, 0) + 1) = \psi(\Omega^{\Omega\omega} + \Omega^{\psi(0)})$

$$\phi(\phi(1,0,0),\phi(\omega,0,0)+1)=\psi(\Omega^{\Omega\omega}+\Omega^{\psi(\Omega^{\Omega})})$$

$$\phi(\phi_1(0),\phi(\phi_1(0),0,0),0)=\psi(\Omega^{\Omega\psi(0)+\psi(\Omega^{\Omega\psi(0)})})$$

 $\phi(1,1,0,1) = \psi(\Omega^{\Omega^2 + \Omega} 2)$ $\phi(1,1,1,0) = \psi(\Omega^{\Omega^2 + \Omega + 1})$

$$\phi(2,0,0,0) = \psi(\Omega^{\Omega^2 2})$$

Conventions and notations:

- The order on finite rooted trees is recursively defined as follows: a tree A is less than a tree B, written $A \prec B$, iff:
 - either there is some child (=immediate subtree) B' of B such that $A \leq B'$,
 - or the following two conditions hold: every child A' of A satisfies $A' \prec B$, and the list of children of A is lexicographically less than the list of children of B for the order \prec (with the leftmost children having the most weight, i.e., either B has more children than A, or if A' and B' are the leftmost children on which they differ then $A' \prec B'$).

This is a well-order.

- ω is the smallest infinite ordinal.
- Ordinal addition, multiplication and exponentiation are defined as usual:
 - (i) $\alpha + 0 = \alpha$
 - (ii) $\alpha + 1$ is the successor of α .
 - (iii) $\alpha + (\beta + 1) = (\alpha + \beta) + 1$
 - (iv) If δ is limit then $\alpha + \delta$ is the limit of the $\alpha + \beta$ for $\beta < \delta$.
 - (v) $\alpha \cdot 0 = 0$
 - (vi) $\alpha(\beta + 1) = \alpha\beta + \alpha$
 - (vii) $\alpha^0 = 1$
 - (viii) $\alpha^{\beta+1} = \alpha^{\beta} \alpha$
- $\phi_1(\alpha) = \varepsilon_{\alpha}$ is the α -th fixed point of $\xi \mapsto \omega^{\xi}$ (with ε_0 the smallest: it is the limit of ω , ω^{ω} , $\omega^{\omega^{\omega}}$, etc.).
- The Veblen hierarchy: For any $\beta > 1$, let $\phi_{\beta}(\alpha)$ be the α -th common fixed point of ϕ_{γ} for all $0 < \gamma < \beta$ (with $\phi_{\beta}(0)$ the smallest). Note:
 - (i) $\phi_{\beta}(\alpha)$ is continuous in α for all β but it is *not* continuous in β except for $\alpha = 0$.
 - (ii) $\phi_{\beta+1}(0)$ is the limit of $\phi_{\beta}(0)$, $\phi_{\beta}(\phi_{\beta}(0))$, $\phi_{\beta}(\phi_{\beta}(\phi_{\beta}(0)))$, etc.
 - (iii) $\phi_{\beta+1}(\alpha+1)$ is the limit of $\phi_{\beta+1}(\alpha)+1$, $\phi_{\beta}(\phi_{\beta+1}(\alpha)+1)$, $\phi_{\beta}(\phi_{\beta}(\phi_{\beta+1}(\alpha)+1))$, etc.
 - (iv) If δ is limit (and β is arbitrary) then $\phi_{\beta}(\delta)$ is the limit of the $\phi_{\beta}(\xi)$ for $\xi < \delta$.
 - (v) If δ is limit then $\phi_{\delta}(0)$ is the limit of the $\phi_{\gamma}(0)$ for $\gamma < \delta$.
 - (vi) If δ is limit then $\phi_{\delta}(\alpha+1)$ is the limit of the $\phi_{\gamma}(\phi_{\delta}(\alpha)+1)$ for $\gamma<\delta$.

- $\phi(1,0,\alpha) = \Gamma_{\alpha}$ is the α -th fixed point of $\xi \mapsto \phi_{\xi}(0)$ (with Γ_0 the smallest: it is the limit of $\phi_1(0)$, $\phi_{\phi_1(0)}(0)$ $\phi_{\phi_{\phi_1(0)}(0)}(0)$, etc.; this is known as the Feferman-Schütte ordinal).
- More generally, let $\phi(\beta, \alpha) = \phi_{\beta}(\alpha)$ (we only use the notation with a subscript for values less than Γ_0) and define ϕ of finitely many variables by: $\phi(\beta_n, \beta_{n-1}, \dots, \beta_r, 0, 0, \dots, 0, \alpha)$ is the α -th fixed point of all the $\xi \mapsto \phi(\gamma_n, \gamma_{n-1}, \dots, \gamma_r, \xi, 0, 0, \dots, 0)$ for $(\gamma_n, \dots, \gamma_r)$ lexicographically less than $(\beta_n, \dots, \beta_r)$ (the leftmost variable having the most weight), with the convention that $\phi(0, \beta_{n-1}, \dots, \beta_0) = \phi(\beta_{n-1}, \dots, \beta_0)$.
- Ω is the first uncountable ordinal.
- A collapsing function: $\psi(\alpha)$ is defined inductively as the smallest ordinal not expressible from 0, 1, ω and Ω using addition, multiplication, exponentiation, and application of the function ψ itself to ordinals less than α . Or, more rigorously:
 - Assume ψ has been defined for all ordinals $\beta < \alpha$.
 - Let $C(\alpha)$ be the set of ordinals constructed starting from 0, 1, ω and Ω by recursively applying the following functions: ordinal addition, multiplication and exponentiation and the function $\psi \upharpoonright_{\alpha}$, i.e., the restriction of ψ to ordinals $\beta < \alpha$. Formally, we define $C(\alpha)_0 = \{0, 1, \omega, \Omega\}$ and inductively $C(\alpha)_{n+1} = C(\alpha)_n \cup \{\beta_1 + \beta_2, \beta_1\beta_2, \beta_1^{\beta_2} : \beta_1, \beta_2 \in C(\alpha)_n\} \cup \{\psi(\beta) : \beta \in C(\alpha)_n \land \beta < \alpha\}$ for all natural numbers n, and we let $C(\alpha)$ be the union of the $C(\alpha)_n$ for all n.
 - Define $\psi(\alpha)$ as the smallest ordinal not in $C(\alpha)$.

It turns out that:

- (i) ψ is continuous and non-decreasing.
- (ii) The range of ψ is precisely the set of ε -numbers (i.e., fixed points of $\xi \mapsto \omega^{\xi}$) up to the Bachmann-Howard ordinal.
- (iii) $C(\alpha)$ consists exactly of those ordinals whose iterated base Ω representation only has pieces less than $\psi(\alpha)$; in particular, $C(\alpha) \cap \Omega = \alpha$.
- (iv) $\psi(\alpha+1)$ is always equal either to the first ε -number after $\psi(\alpha)$ —this happens when $\alpha \in C(\alpha)$ —or else to $\psi(\alpha)$ —which happens when $\alpha \notin C(\alpha)$.
- (v) If δ is limit then $\psi(\delta)$ is the limit of the $\psi(\xi)$ for $\xi < \delta$.
- (vi) $\psi(\alpha + \Omega)$ is the first fixed point of $\xi \mapsto \psi(\alpha + \xi)$.
- (vii) $\psi(\alpha\Omega)$ is the first fixed point of $\xi \mapsto \psi(\alpha\xi)$.
- (viii) $\psi(\alpha^{\Omega})$ is the first fixed point of $\xi \mapsto \psi(\alpha^{\xi})$.
- (ix) $\psi(\alpha^{\beta^{\Omega}})$ is the first fixed point of $\xi \mapsto \psi(\alpha^{\beta^{\xi}})$.
- Certain ordinals have special names:
 - $-\psi(\Omega^{\Omega}) = \phi(1,0,0) = \Gamma_0$ is the "Feferman-Schütte ordinal": it is the set of ordinals constructed starting from 0, 1, ω by recursively applying ordinal addition, multiplication and exponentiation and the Veblen functions $\phi_{\beta}(\alpha)$ of two variables;
 - $-\psi(\Omega^{\Omega^{\omega}})$ is the "small" Veblen ordinal: it is the set of ordinals constructed starting from 0, 1, ω by recursively applying ordinal addition, multiplication and exponentiation and the Veblen functions $\phi(\cdots)$ of finitely many variables, and it is also the length of the ordering \prec of finite rooted trees;
 - $-\psi(\Omega^{\Omega^{\Omega}})$ is the "large" Veblen ordinal (it can be defined similarly to the "small" Veblen ordinal using a generalization of $\phi(\cdots)$ to transfinitely many variables all but finitely many of which are zero);
 - $-\psi(\varepsilon_{\Omega+1})$ is the Bachmann-Howard ordinal.

 $\alpha_{\rm example}$

$$\begin{split} \alpha_{\text{example}} &= \phi(\phi_1(1), \omega, \omega^2 + \omega)^{\phi(2,0,\omega^{\omega^2})} \, \phi(\omega^{\omega^{\omega+1}}, \omega, \phi(1,0,0)) \, \phi(\omega^{\omega} + \omega, 0, 2) \\ &= \psi(\Omega^{\Omega\psi(1) + \omega}(\omega^2 + \omega))^{\psi(\Omega^{\Omega^2}\omega^{\omega^{\omega^2}})} \, \psi(\Omega^{\Omega\omega^{\omega^{\omega+1}} + \omega} \psi(\Omega^{\Omega})) \, \psi(\Omega^{\Omega(\omega^{\omega} + \omega)}3) \end{split}$$