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Conventions and notations:

e The order on finite rooted trees is recursively defined as follows: a tree A is less than a tree B, written A < B,
iff:
— either there is some child (=immediate subtree) B’ of B such that A < B/,

— or the following two conditions hold: every child A" of A satisfies A’ < B, and the list of children of A is
lexicographically less than the list of children of B for the order < (with the leftmost children having the
most weight, i.e., either B has more children than A, or if A’ and B’ are the leftmost children on which
they differ then A’ < B’).

This is a well-order.
e w is the smallest infinite ordinal.

e Ordinal addition, multiplication and exponentiation are defined as usual:

e ¢1(a) = ¢, is the a-th fixed point of & + w¢ (with &¢ the smallest: it is the limit of w, w®, W’ etc.).

e The Veblen hierarchy: For any 8 > 1, let ¢g(cr) be the a-th common fixed point of ¢., for all 0 < v < 8 (with
¢5(0) the smallest). Note:

(i
(ii) ¢p+1(0) is the limit of ¢5(0), p(¢s(0)), ¢s(ds(Ps(0))), ete.

) ¢p(c) is continuous in « for all 8 but it is not continuous in § except for a = 0.

)
(ill) ¢py1(a+ 1) is the limit of ¢gyi(a) + 1, dg(dpt+1(e) + 1), da(ds(dp+1(a) + 1)), ete.

)

)

)

If § is limit (and § is arbitrary) then ¢g(d) is the limit of the ¢g(&) for £ < 6.
(v) If § is limit then ¢s(0) is the limit of the ¢,(0) for v < 4.
(vi) If ¢ is limit then ¢5(a + 1) is the limit of the ¢, (¢s(cr) + 1) for v < 4.

(iv
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e #(1,0,a) = Iy, is the a-th fixed point of § — ¢¢(0) (with I'g the smallest: it is the limit of ¢1(0), ¢4, (0)(0)
Dy, 0y(0)(0), ete.; this is known as the Feferman-Schiitte ordinal).

e More generally, let ¢(8, ) = ¢g() (we only use the notation with a subscript for values less than I'y) and
define ¢ of finitely many variables by: &(Bn, Bn—1,--.,05r,0,0,...,0,«) is the a-th fixed point of all the & —
(Y, Yn-1s-- >V &,0,0,...,0) for (yn,...,v) lexicographically less than (B,,...,03.) (the leftmost variable
having the most weight), with the convention that ¢(0, 5,-1,...,80) = ¢(Bn—-1,---,50)-

e () is the first uncountable ordinal.

e A collapsing function: () is defined inductively as the smallest ordinal not expressible from 0, 1, w and 2
using addition, multiplication, exponentiation, and application of the function 1 itself to ordinals less than a.
Or, more rigorously:

— Assume 1) has been defined for all ordinals 5 < «.

— Let C(«) be the set of ordinals constructed starting from 0, 1, w and Q by recursively applying the
following functions: ordinal addition, multiplication and exponentiation and the function v[,, i.e., the
restriction of ¢ to ordinals f < «. Formally, we define C(a)y = {0,1,w,Q} and inductively C(« ) 41 =

Cla)n U{BL+ Ba, P1B2, B17 1 1, B2 € Cla)n} U{Y(B) : B € C(a)n A B < a} for all natural numbers n,
and we let C(«) be the union of the C(«),, for all n.

— Define ¥ () as the smallest ordinal not in C(a).
It turns out that:

(i) ¢ is continuous and non-decreasing.

(ii) The range of 1 is precisely the set of e-numbers (i.e., fixed points of ¢ = w®) up to the Bachmann-Howard
ordinal.

(iii) C(«a) consists exactly of those ordinals whose iterated base (2 representation only has pieces less than 9 («);
in particular, C(a) NQ = a.

(iv) Y(a+ 1) is always equal either to the first e-number after 1)(«)—this happens when « € C'(a)—or else to
1(a)—which happens when a ¢ C(a).

0 is limit then t(¢) is the limit of the ¢(§) for £ < 4.
a + ) is the first fixed point of £ — ¥(a +&).

af)) is the first fixed point of £ — 1 (af).

af?) is the first fixed point of & + ¥(af).

af ) is the first fixed point of £ — w(aﬁg).

(v) I
(vi)
(vii)
(viii)
X)

(i

e Certain ordinals have special names:

— P(Q%) = ¢(1,0,0) = T is the “Feferman-Schiitte ordinal”: it is the set of ordinals constructed starting
from 0, 1, w by recursively applying ordinal addition, multiplication and exponentiation and the Veblen
functions ¢g(a) of two variables;

- 1/J(QQUJ) is the “small” Veblen ordinal: it is the set of ordinals constructed starting from 0, 1, w by recursively
applying ordinal addition, multiplication and exponentiation and the Veblen functions ¢(- - -) of finitely many
variables, and it is also the length of the ordering < of finite rooted trees;

- 1[1((299) is the “large” Veblen ordinal (it can be defined similarly to the “small” Veblen ordinal using a
generalization of ¢(---) to transfinitely many variables all but finitely many of which are zero);

— ¢(eq+1) is the Bachmann-Howard ordinal.
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