
Introduction.

This is Yet Another Text on general nonsense. I had written another one previously, but
I was rather unsatisfied about it; in truth, I hadn’t quite understood the full significance
of adjoint functors. I now realize that universal problems should better be stated in terms
of adjoint functors rather than of universal objects. Also, I will take the opportunity to
discuss some more notions, such as the Yoneda embedding, Cartesian closed categories,
relations with logic, and so on.

1. Categories.

A category C is a class ob(C), together with a set Hom(A,B) for each A,B ∈ ob(C) (all
these sets being disjoint), and for all A,B,C ∈ ob(C) a composition law

Hom(B,C)×Hom(A,B)→ Hom(A,C)

which is associative whenever that makes sense and has a two-sided identity element
1A ∈ Hom(A,A) for each A ∈ ob(C).

When C is a category, the elements of ob(C) shall be called the objects of C
(or sometimes just the elements of C), and the elements of Hom(A,B) the arrows (or
morphisms) from A to B. If f ∈ Hom(A,B) we also write f :A→ B, and we say that A is
the domain (or source) of f , and that B is its range (or target, or goal, or codomain). We
also write dom f for the domain of f and ran f for its range.

When ob C is a set (rather than a proper class), we say that C is a small category.
That is just a cavalier way of treating set-theoretical difficulties; some people dispense with
them altogether and speak of the “set of sets” without blushing, which is probably a wise
thing as we really do not care about these difficulties. Grothendieck invented the concept
of “universes” to avoid them. Let us say no more on the subject.

To make the definition of a category more explicit, if α:A → B and β:B → C in a
category C, then we have a composite morphism βα:A→ C. The associativity states that
if α:A→ B, β:B → C and γ:C → D then (γβ)α = γ(βα), and we will therefore dispense
with the parentheses and write γβα for this morphism. The existence of the unit element
states that if α:A→ B then 1Bα = α and α1A = α. Of course, the unit element is unique.

We now give a few examples of categories.
The category Set is the category whose objects are sets, and whose morphisms are

maps between sets. In other words, if A and B are sets, then Hom(A,B) is the set of all
maps from A to B. Composition is defined in the usual way, and 1A is the identity on any
set A.

The category PSet is the category whose objects are pairs (A, x) with A a (non empty)
set and x ∈ A (the “base point”), and whose morphisms are maps of sets which preserve
base points. In other words, if (A, x) and (B, y) are pointed sets, then Hom((A, x), (B, y))
consists of those maps f of sets from A to B such that f(x) = y. Here again, composition
is defined in the usual way.

The category Top is the category whose objects are topological spaces, and whose
morphisms are continuous maps between topological spaces (with composition defined in
the usual way). The category HausTop is the category whose objects are Hausdorff
(i.e. T2, i.e. separated) topological spaces, and whose morphisms are continuous maps
between them. The reader will have no difficulty in defining the categories PTop (pointed
topological spaces) and PHausTop (pointed Hausdorff spaces).
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The category HomoTop is a little more subtle: its objects are the same as those
of Top, but a morphism from A to B in HomoTop is a homotopy equivalence class
of continuous maps, rather than just a continuous map. To make this more explicit:
two continuous maps f, f ′ between A and B are said to be homotopic iff there exists a
continuous map Θ from [0, 1]×A to B such that Θ(0, ·) = f and Θ(1, ·) = f ′. This defines
an equivalence relation on the set HomTop(A,B) of continuous maps from A to B, and
we let HomHomoTop(A,B) be the quotient of HomTop(A,B) by this equivalence relation.
Since homotopy is compatible with composition, we get a composition map on morphisms
of HomoTop by declaring that the composition of the homotopy class of g and that of f is
the homotopy class of gf . The category HausHomoTop is defined in the obvious way. In
defining the categories PHomoTop and PHausHomoTop, we have to be more careful;
namely, we impose that homotopies preserve base points (that is, two morphisms of pointed
topological spaces f : (A, x)→ (B, y) and g: (A, x)→ (B, y) are deemed homotopic iff there
exists Θ such as above, with the additional condition that Θ(t, x) = y for all t ∈ [0, 1]).

For 0 ≤ r ≤ ω (which means r ∈ N, r = ∞ or r = ω), we define the category
CrMan whose objects are (paracompact separable) Cr manifolds and whose morphisms
are Cr maps between these (Cω means “real analytic”). There is also a category HolMan
whose objects are complex analytic (i.e. holomorphic) manifolds, and whose morphisms
are holomorphic maps between them.

Moving from topology to algebra, we have a category Group, whose objects are groups
and whose morphisms are group homomorphisms (with composition defined in the usual
way). We also have a category AbGroup whose objects are abelian groups and whose
morphisms are group homomorphisms (an abelian group homomorphism is the same thing
as a group homomorphism).

The category Ring has (general noncommutative) rings (with unit element) as
objects, and ring homomorphisms (preserving unit elements) as morphisms. The category
ComRing has commutative rings as objects and ring homomorphisms as morphisms.
We could also define a category PsRing of rings without unit element and similarily for
ComPsRing.

If G is a given group, then we have a category GSet of G-sets (sets upon which G acts,
also called representations of G), with maps preserving the action (“G-homomorphisms”)
as morphisms (in other words, a morphism from A to B is a map of sets f from A to B
such that f(g · x) = g · f(x) for all x ∈ A). This category is not to be confused with the
category GrpSet whose objects are pairs (G,S) with G a group and S a G-set, and whose
morphisms (G,S) → (H,T ) are pairs f = (f\, f]), where f\ is a group homomorphism
from G to H, and f] is a map of sets from S to T such that f](g · x) = f\(g) · f](x) for all
g ∈ G and x ∈ X.

Similarily, if R is a ring, we have a category RMod of (left) R-modules with linear
maps as morphisms. We can, for example, identify (in a sense that will be made precise
later) the categories ZMod and AbGroup. The category RMod is not to be confused
with the category RingMod whose objects are pairs (R,M) with R a ring and M an R-
module, and whose morphisms (R,M) → (S,N) are pairs (f\, f]) with f\:R → S a ring
homomorphism and f]:M → N a homomorphism of abelian groups that also satisfies
f](ax) = f\(a) f](x) for all a ∈ G and x ∈M . The reader will have no difficulty in defining
the category ComRingMod of modules over commutative rings.

We leave it to the reader to define the categories RAlg (of R-algebras) for a
commutative ring R, RComAlg (of commutative R-algebras) and ComRingComAlg
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(of commutative algebras over commutative rings). We note that RComAlg can be
identified with the category of commutative ring homomorphisms R→ A with a morphism
from R → A to R → B being a homomorphism A → B that makes the obvious triangle
commute (this is an example of a “coslice” category, see below). Similarily, we can identify
ComRingComAlg with the category of commutative ring homomorphisms R→ A (only
this time R varies) with a morphism from R → A to S → B being a pair of ring
homomorphisms R → S and A → B that make the obvious rectangle commute (this
will be generalized when we define functor categories).

Let us also not forget the category Field of fields whose morphisms are inclusions of
fields (we recall that a morphism of fields is always an inclusion — we also recall that the
zero ring is not a field). For p prime or p = 0, we also have the category Fieldp of fields
of characteristic p. There is also a category ACField of algebraically closed fields and
similarily one can define ACFieldp.

In homological algebra, one is led to define the category GradAbGroup of graded
abelian groups, that is, Z-sequences of abelian groups with Z-sequences of group
homomorphisms as morphisms. More important is the category ∂AbGroup whose
objects are complexes of abelian groups, that is, Z-sequences (Kn) of abelian groups
with homomorphisms ∂n:Kn → Kn−1 between them such that ∂n∂n+1 = 0 for every n,
and whose morphisms are chain maps, that is, Z-sequences (fn) of abelian group
homomorphisms fn:Kn → K ′n which commute with the boundary operator, that is
∂′nfn = fn−1∂n for each n. We say that two such chain maps (fn) and (gn) are homotopic
iff there exists a Z-sequence (sn) of abelian group homomorphisms sn:Kn → K ′n+1 such
that fn−gn = ∂′n+1sn+sn−1∂n for each n. This is an equivalence relation compatible with
composition, and we therefore get a category Homo∂AbGroup of complexes of abelian
groups with homotopy classes of chain maps as morphisms.

Let us also not forget ordered structures: there is a category POSet whose objects
are partially ordered sets (“posets”), and whose morphisms are maps of sets that preserve
order; in other words f :A → B is a morphism of posets iff x ≤ y implies f(x) ≤ f(y) for
all x, y ∈ A. If instead we impose that f(x) ≤ f(y) iff x ≤ y, then we get the definition
of an increasing function, and if we use them as morphisms we get the category IPOSet.
Of course, we can use totally ordered sets instead of partially ordered sets as objects, and
then we get the categories TOSet and ITOSet.

To move to a little more exotic things, for those who know what it means, if X is
a topological space, then we have a category XPreSheaf of presheaves (of sets) on X,
and a category XSheaf of sheaves (of sets) on X. And of course we have categories
AbGroupXSheaf (sheaves of abelian groups on X), RingXSheaf (sheaves of rings
on X), and so on. There is also a category RingedSpace of ringed spaces (topological
spaces with a sheaf of rings on them), and if (X,O) is a ringed space, a category
OModSheaf of (sheaves of) O-modules. Another important category is the category
of schemes Scheme.

Another little anecdotical example: the category Frame is the category whose objects
are posets which admit finite meets (i.e. infema) and arbitrary joins (i.e. suprema), the
meet operation being distributive over the join. Morphisms of frames are maps which
preserve the meet and join operations (and hence the order too). (Think of a frame as the
set of open sets on some kind of generalized topological space — called a locale.)

All those examples should persuade that categories abound in mathematics, in the
sense that many objects of interest to mathematicians congregate in categories. However,
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there are many other kinds of categories, which do not at all look like “sets with some kind
of structure on them”. We now give some examples of those.

The simplest kind of category is, of course, the empty category: it has no objects
and no arrows. We shall write it 0. The next simplest example is the category with just
one object, •, and one arrow 1•: • → • (composition is defined without trouble). We shall
write it 1.

More generally, if S is any set, we can view S as a category C in the following way:
the objects of C are just the elements of S, and the only morphisms are the identity
morphisms. Such categories are called discrete categories.

As a generalization of this, suppose S is a preordered set, that is, a set with a reflexive
and transitive relation � on it. We make S into a category C by letting the objects of C be
the elements of S, and Hom(A,B) consist of one element exactly when A � B, otherwise be
empty. Composition is defined in the only possible way (if A � B � C then the composite
of the unique arrow A → B and the unique arrow B → C is the unique arrow A → C).
One important case of this is the case when S is actually a complete boolean algebra (or
Heyting algebra); for, as we shall see, the category thus obtained is then cartesian closed.

At the opposite end of the spectrum, so to speak, are the group categories: if G is a
group, then we can make it into a category C by declaring that C has exactly one object •,
and that Hom(•, •) is precisely G, with composition being defined as multiplication on G
(and of course 1• is the identity element of G). More generally, we can consider categories
all of whose arrows are isomorphisms (see below); such categories can be identified with an
algebraic structure that is very much like a group except that multiplication is not always
defined: such structures are called groupoids. In order to avoid the unpleasant definition
of a groupoid, we shall define a groupoid to be a small category in which all arrows are
isomorphisms.

Now suppose Γ is a graph (here, this means an arbitrary set of points, and an arbitrary
set of arrows between these points); then we may form the free category C generated by Γ:
the objects of C are the points of Γ, and the arrows of C are freely generated by the arrows
of Γ: for any finite sequence fk:Ak → Ak+1 of arrows of Γ (possibly empty, in which case
we are creating an identity arrow) create an arrow fn · · · f1:A1 → An+1 in C, and let
composition be defined in the obvious way (there are no non trivial relations between
arrows).

While we’re talking of graphs, here is a little more terminology: a category C is called
strongly connected iff Hom(A,B) is non empty for any objects A,B ∈ ob C. It is called
weakly connected or simply “connected” iff for any objects A,B of C there exist objects
A0, . . . , An of C with A0 = A and An = B such that for each i either Hom(Ai, Ai+1)
or Hom(Ai+1, Ai) is non empty (we may of course suppose it is the one for even i and the
other for odd i).

To take a more exotic example, suppose we have an axiomatic system Σ in a possibly
intuitionistic logic. We define a category by letting the objects be the propositions in Σ,
and the arrows A → B be the proofs of B starting from A, composition being defined
in the obvious way. This does form a category, but it is not very interesting (essentially
because no arrow other than the identity is invertible); it can be made more interesting
if we indentify some proofs. For example, one may want to identify all proofs of T (the
tautologically true statement) from starting from A, for any A; or to identify, given proofs
f :C → A and g:C → B, the proof obtained by composing f ∧ g:C → A ∧ B and
A ∧ B → A, with the proof f ; and so on (of course, each of these identifications imposes
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some identifications on composites). It turns out, not surprisingly, that if we start with
an aristotelian propositional calculus and we do all the identifications as seem natural,
and further quotient out isomorphic objects (see below), then we are just left with (the
category of) the Lindenbaum algebra of our formal system.

To return to more familiar grounds, we now proceed to describe some operations that
can be performed on categories.

First, if (Ci)i∈I is a family of categories (I can be taken to be a proper class, but who
cares), then we have a category C =

∐
i∈I Ci, the disjoint sum of the categories Ci, defined

as follows: ob C is the disjoint union of the ob Ci, and HomC(A,B) is HomCi(A,B) if both
A,B are objects of Ci, empty otherwise. Composition is defined in the obvious way. Thus,
a discrete category (see above) is just the disjoint sum of copies of 1. Of course, if the
family I has a finite number of elements, we write C1 q · · · qCn for

∐n
i=1 Ci.

More important, if C is a category, then we have a category Cop, called the
opposite category of C, defined as follows: objects of Cop are just objects of C, and
arrows of Cop are arrows of C, but they go the other way , in the sense that for all objects
A and B,

HomCop(A,B) = HomC(B,A)

and composition is defined as follows: fg in Cop is just gf in C. Trivially we have
(Cop)op = C.

Generally, the opposite category of a nice, concrete, category, does not look nice or
intuitive at all; in fact, it looks completely artificial in most cases. Still, the category of
affine schemes is (equivalent to) the opposite category of the category of rings. Also, the
category Locale of locales, defined as the opposite category to the category Frame of
frames, is rather similar to the category of topological spaces.

If (Ci)i∈I is a family of categories, then we have a category C =
∏
i∈I Ci, the product

of the categories Ci, defined as follows: an object of C is a family (Ai)i∈I , with each Ai an
object of Ci, and a morphism (Ai)→ (Bi) is a family (fi), where fi:Ai → Bi is an arrow
of Ci. Of course, if the family I has a finite number of elements, we write C1 × · · · ×Cn

for
∏n
i=1 Ci. If the Ci are all equal to a fixed category C0, then we can write CI

0 for the
product of the Ci. The careful reader will have noticed, for example, that the category
GradAbGroup defined above is none other than AbGroupZ =

∏
k∈Z AbGroup. Also

notice that if all the terms of a disjoint sum
∐
i∈I C0 are equal, then we can identify the

disjoint sum in question with I ×C0, where the set I is identified with its corresponding
discrete category.

More generally, if C and D are categories (the latter being small), then there is a
category CD whose objects are functors (see below) D  C, and whose morphisms are
natural transformations between functors. This does not come in conflict with the previous
definition of CI if I is a set, provided we do the obvious identifications. Notice in particular,
for what it’s worth, that C0 = C∅ = 1 (where the equal signs really stand for canonical
identifications), and C1 = C{•} = C (ditto). More interestingly, CDqD′ can be identified
with CD ×CD′ and CD×D′ with (CD)D

′
.

If C is a category and J is an object of C, then we can form a category C ↓ J , the
slice category of C over J (or “with J as base object”, or simply J-objects): objects of
C ↓ J are arrows A → J in C, and arrows in C ↓ J are arrows above J ; in other words,
a morphism between A → J and B → J is a morphism A → B (in C) which makes the
obvious diagram commute. Composition is defined in the obvious manner. Note that J
itself can be considered as an object of C ↓ J , namely the identity map 1J : J → J .
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In the same manner, we leave it to the reader to define the coslice category J ↑ C,
whose objects are morphisms J → A in C.

Finally, if C is a category, we can define a category Cmor, the category of morphisms
of C, whose objects are arbitrary morphisms A → A′ in C, a morphism in Cmor, say,
between A → A′ and B → B′, being a pair of morphisms of C, A → B and A′ → B′,
that make the obvious square commute. The reader who already know what a functor is
will have noticed that this category is nothing else than the category C•→•, where • → •
stands for the category with two objects and exactly three arrows (of which two are the
identity).

We finish this section with an important notion: if C and D are categories, such that
the objects of D are a subclass of the objects of C, and that for every A,B ∈ ob D the
set HomD(A,B) is a subset of HomC(A,B), then we say that D is a subcategory of C.
If moreover HomD(A,B) = HomC(A,B) for all A,B ∈ ob D, then we say that D is a
full subcategory of C. Note that for any subclass of the class of objects of C, there is
exactly one full subcategory of C whose objects are these objects (we say that it is the full
subcategory determined by these objects).

For example, PSet is a subcategory of Set, but it is not full. In the same way,
Top is a subcategory of Set, but it is also not full (“not every map between topological
spaces is continuous”). On the other hand, AbGroup is a full subcategory of Group,
and ComRing of Ring, and again TOSet of POSet. Note however that HomoTop is
not a subcategory of Top; indeed, the morphisms of HomoTop are equivalence classes of
morphisms of Top, and not particular morphisms (if that made sense, we should say that
it is a full but not faithful subcategory — instead, we will say that there is a full bijective
functor that is not faithful, see below).

2. Kinds of arrows.

An isomorphism in a category C is an arrow f :A → B such that there exists g:B → A
verifying gf = 1A and fg = 1B . In this case, the objects A and B are said to be
isomorphic, and we write A ∼= B, sometimes f :A ∼= B or f :A

∼→ B. Of course, it is
equivalent to require that there exist g, g′:B → A such that gf = 1A and fg′ = 1B
(because then g = gfg′ = g′). If we impose only the existence of g:B → A such that
gf = 1A, we say that the arrow f is retractable, and we say that g is a retraction of f .
Similarily, if we impose only the existence of g:B → A such that fg = 1A, we say that the
arrow f is sectionable, and that g is a section of f .

An arrow f :A → B is called a monomorphism when for any two arrows g and g′

of target A and common source, the equation fg = fg′ implies g = g′. Similarily, an
arrow f :A → B is called a epimorphism when for any two arrows g and g′ of source B
and common target, the equation gf = g′f implies g = g′. Two monomorphisms
f :A → B and f ′:A′ → B are said to be isomorphic iff there exists α:A → A′

an isomorphism such that f = f ′α; this is clearly an equivalence relation, and an
equivalence class of monomorphisms with target B is called a subobject of B. Moreover,
a retractable morphism is a monomorphism and any monomorphism isomorphic to a
retractable morphism is itself retractable. Therefore, it makes sense to ask whether the
monomorphisms defining a subobject are retractable; in this case, we shall say that the
subobject is a retract. Two epimorphisms f :A → B and f ′:A → B′ are said to be
isomorphic iff there exists β:B → B′ an isomorphism such that f ′ = βf ; this is clearly
an equivalence relation, and an equivalence class of epimorphisms with source A is called
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a quotient object of A. Moreover, a sectionable morphism is an epimorphism and any
epimorphism isomorphic to a sectionable morphism is itself sectionable. Therefore, it
makes sense to ask whether the epimorphisms defining a quotient object are retractable;
in this case, we shall say that the quotient object is a section (hopefully this double use of
the word “section” will not cause any confusion). A category in which all subobjects are
retracts (i.e. every monomorphism is retractable) is called semisimple, and one in which all
quotient objects are sections (i.e. every epimorphism is sectionable) is called cosemisimple.

If C is an arbitrary category, then we have a category C̄, the reduced category of C,
defined in the following way: choose once and for all representatives of each isomorphism
class of objects in C, and let C̄ be the full subcategory defined by these representatives.
Now in fact the category C̄ does not depend, up to isomorphism (to be defined later),
on the actual choice of the representatives, so it makes sense to call it simply C̄. One
may also say that the objects of C̄ are isomorphism classes of objects of C, but defining
the morphisms is then very, very slippery (for example, one may be tempted to define
morphisms by identifying f :A → B with f ′:A′ → B′ iff there exist isomorphisms
α:A → A′ and β:B → B′ such that f ′α = βf , but unfortunately that is simply wrong,
for then any automorphism of A gets identified with 1A, an undesirable phenomenon). We
will later see that the categories C and C̄ are equivalent, and in fact that they are the
archetype of equivalent categories.

We now describe what the various notions defined above for some of the “classical”
categories that we presented earlier.

In Set, an isomorphism is just a bijection, a monomorphism is an injection and an
epimorphism is a surjection. Thus, every every epi is sectionable (that is the Axiom of
Choice), meaning that the category Set is cosemisimple. Not every mono is retractable,
however, because the unique map ∅ → B has no retraction if B is not empty (that is
the unique example). A subobject of a set is what is ordinarily known as a subset, and
a quotient object is what is ordinarily known as a partition (i.e. an equivalence relation).
The reduced category of Set is (for example) the category of ordinals with arbitrary maps
of sets as morphisms. :-(For example, let us prove the statement about epimorphisms. It
is clear that a surjective map is epi. Now if f :A→ B is epi, and x ∈ B, consider the two
maps g and g′ from B to {0, 1} which send x to 0 and 1 respectively, and the rest of B
to 0. Since g 6= g′ we must have gf 6= g′f , and therefore g′f is not the constant zero map,
so f takes the value x.:-)

In PSet, an isomorphism is just a bijection preserving base points; a monomorphism
(resp. epimorphism) is an injection (resp. surjection) preserving base points. A subobject
of a pointed set is a subset with the same base point, and a quotient object of a pointed
set is a partition, with the class of the base point as base point. The category PSet is
semisimple (the ridiculous phenomenon of Set does not occur) and cosemisimple.

Now consider the category Top. Isomorphisms in this category are homeomorphisms.
Monomorphisms are injective continuous maps and epimorphisms are surjective continuous
maps. :-(It is evident that an injective map is mono; on the other hand, if f :A → B is
mono and x 6= y in A, consider the two maps g, g′ from {•} to A which take • to x and y
respectively: since g 6= g′ we must have fg 6= fg′ and that means f(x) 6= f(y), so f is
injective. That a surjective map is epi is also obvious. Now if f :A→ B is epi, and x ∈ B,
consider the two maps g and g′ from B to {0, 1} with the coarse topology which send x
to 0 and 1 respectively, and the rest of B to 0. Since g 6= g′ we must have gf 6= g′f , and
therefore g′f is not the constant zero map, so f takes the value x.:-) A subobject of a
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space B is not just a subspace of C since a mono map need not be a homeomorphism on
its image (i.e. an embedding); rather, a subobject of B is a subset of B with a topology
which is finer than the topology it inherits from B. Similarily, a quotient object of A is a
quotient set of A with a topology which is coarser than the quotient topology. In Top, not
all monomorphisms are retractable (the example from Set will work, or, to take a more
interesting one, the injection of the unit circle in the closed unit disk is not retractable),
and not all epimorphisms are sectionable (the projection of the graph of a discontinuous
function on its abscissa axis is an example).

The case of HausTop is a little more delicate. Whereas it is true (with the same proof)
that a monomorphism is an injective continuous map, it is not true that all epimorphisms
are surjective. Rather, an epimorphism is a dominant continuous map, i.e. one whose
image is dense. :-(If the image D of f :A→ B is dense, and gf = g′f , then g, g′ coincide
on D; but since B is Hausdorff the set of points where they coincide is closed, so it is all
of B. On the other hand, if the closure F of the image of f is not all of B, then let C be
the space obtained by gluing two copies of B along F (that space is Hausdorff because F
is closed) and let g, g′ be the two canonical maps B → C: we have g 6= g′ but gf = g′f
so that f is not epi.:-) Just as Top, the category HausTop is neither semisimple nor
cosemisimple, and the same examples will do.

In the category Group, isomorphisms are what is generally meant by that term,
and monomorphisms are injective morphisms. Epimorphisms are indeed the same thing
as surjective morphisms, but that is not trivial at all. :-(It is obvious that a surjective
morphism is epi. The hard part is the converse. Let f :A→ B be a group homomorphism
with image H, and let C be the amalgam of B with itself along H, g, g′ the two canonical
maps B → C. Then we have gf = g′f ; but on the other hand g = g′ iff H = B,
which finishes the proof. Of course, the hard part is the existence of the amalgam. The
careful reader will have noted that this proof is similar to the one given for the category
HausTop. This is not fortuitous, and the general notion of an amalgamated sum (in
this case, a cokernel pair) shoud clear things up.:-) Thus, in Group, a subobject and
a quotient object are what we normally mean by that (that is, subgroup and quotient
group respectively). We can also characterize retracts and sections: a subgroup A ≤ B is
a retract iff there exists a normal subgroup H of B such that B is semidirect product of H
by A. :-(The “if” part is clear. Now let us suppose that the canonical injection f :A→ B
has a retraction g:B → A, and let H be the kernel of the latter. Then it is obvious that
H E B and H ∩A = {1}. But we also have HA = B, because every x ∈ G can be written
as the product of xg(x)−1 and g(x) with the former belonging to H and the latter to A.
This implies that G is semidirect product of H and A.:-) Similarily, a quotient object
A� A/H of A is sectionable iff A is semidirect product of H by some subgroup (we leave
it to the reader to prove this assertion). As it is well known that not all extensions are
semidirect products, the category Group is neither semisimple nor cosemisimple.

We will not treat the case of AbGroup separately, but rather the more general case
of RMod, where R is a (not necessarily commutative) ring. Clearly, an isomorphism in
RMod is an isomorphism of R-modules. A monomorphism is an injective linear map
and an epimorphism is a surjective linear map. :-(As usual, one direction is obvious.
If f :A → B is mono, and x 6= 0 in A, consider the two maps g, g′ from R (viewed as
a left module over itself) to A taking 1 to x and 0 respectively: they are unequal, and
therefore fg 6= fg′, from which one deduces f(x) 6= 0. If f :A → B is epi, and N is its
image, consider the two maps g, g′ from B to B/N which are respectively the canonical

8



and the zero map: since gf = g′f we must have g = g′, so N = B.:-) Subobjects and
quotient objects therefore correspond to sub and quotient modules respectively. To say
that a subobject A → B is a retract means that the short exact sequence of R-modules
0→ A→ B → A/B → 0 splits, in other words that A is a direct summand of B. Similarily,
to say that a quotient object A→ B is a section means that its kernel is a direct summand
of A. Thus, the category RMod is semisimple iff it is cosemisimple, and that is exactly
what it means for the ring R to be semisimple (hence the name).

Now let us look at the category ComRing: an isomorphism is just what you think. A
monomorphism is an injective morphism. :-(One way is obvious. If f :A→ B is mono, and
x 6= 0 in A, consider the two maps g, g′ from Z[X] to A taking X to x and 0 respectively:
they are unequal, and therefore fg 6= fg′, from which one deduces f(x) 6= 0.:-) An
epimorphism A→ B is a morphism such that (one of) the canonical map(s) B → B⊗AB
is an isomorphism. :-(Suppose f :A → B is epi, and let g, g′ be the two canonical maps
B → B ⊗A B. We have gf = g′f so g = g′. Now that means that x ⊗ 1 = 1 ⊗ x for
every x ∈ B. But then x ⊗ y = xy ⊗ 1 so that the multiplication map B ⊗A B → B
is an isomorphism which is the inverse isomorphism to g = g′. Conversely, suppose that
the two canonical maps B → B ⊗A B are isomorphisms, and let g, g′ be homomorphisms
B → C such that gf = g′f . Then by the universal property of the tensor product there
exists h:B⊗AB → C such that both g, g′ are obtained by composing h with the canonical
morphisms B → B ⊗A B. Since in our case they are equal, it follows that also g = g′ and
hence f is epi.:-) Surjective morphisms are of course epi, but they are not the only ones;
localizations are also epi, for example.

In the category Field, all arrows are monomorphisms (morphisms of fields are always
injective). A morphism k ↪→ K (we can always assume k is a subfield of K) of fields is
an epimorphism iff any two embeddings of K in some larger field L that agree on k agree
on K (that is just stating the definition). Now I claim that in this case K/k is algebraic.
:-(Indeed, we can write k ↪→ k(ti) ↪→ K ↪→ K̄ with k(ti) a purely transcendental extension
of k, K an algebraic extension of k(ti) and K̄ an algebraic closure of K; if K has positive
transcendence degree over k then there is a non trivial automorphism σ of k(ti) over k
(for example, given by t0 7→ −t0 if t0 is one of the variables). This extends to a non
trivial automorphism σ∗ of K̄ over k. Now 1K̄ and σ∗ agree on k but do not agree on K
(as indeed they do not even agree on k(ti)), a contradiction.:-) So now we know that
K/k is algebraic. I claim moreover that K/k is purely inseparable. :-(Indeed, if not
then there exist distinct embeddings of K in an algebraic closure of K that are equal
on k (recall that the number of such embeddings is precisely the separable degree of K
over k), a contradiction again. Thus, an epimorphism is an algebraic purely inseparable
extension. Now conversely, assume K/k is algebraic and purely inseparable, and that we
are given two embeddings of K in a field L that coincide on k. Clearly we can suppose
that L is algebraic over K, and then that it is an algebraic closure of K; but then the
result is obvious.:-) So finally, we have proved that epimorphisms in the category of fields
correspond to algebraic purely inseparable extensions. The only monomorphisms in Field
that are retractable, and the only epimorphisms that are sectionable are isomorphisms
(indeed, a monomorphism that is retractable is not just epi but actually surjective, and
since it is also injective, it is an isomorphism).

Now let us turn to the category TOSet. It is easy to verify that monomorphisms
in TOSet are injective order preserving function. Also, epimorphisms are surjective order
preserving functions. :-(That surjective implies epi is clear. Now suppose f :A→ B is epi,
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and let x ∈ B. Consider the two maps g, g′:B → {0, 1} (where {0, 1} has the usual order
on it) given by g(t) = 1 iff t ≥ x and g′(t) = 1 iff g > x. Then g 6= g′ and so gf 6= g′f which
implies that x is in the image of f .:-) In other words, a subobject of a toset is a subset
with the induced order and a quotient object is a quotient by an “appropriate” equivalence
relation (in other words, every equivalence class is convex, i.e. it contains any point between
two points that it contains). It is clear that every epimorphism is sectionable. Retractable
monomorphisms are harder to grasp: here is one characterization. A monomorphism
f :A → B (thus identifying A with a subset of B with the induced order) is retractable
iff for every m ∈ B the set {x ∈ A:x ≥ m} has an infemum in A. :-(First suppose f
is retractable, and let g be a retraction: g:B → A is order preserving and is the identity
on A. Let m ∈ B and put S = {x ∈ A:x ≥ m}. For every x ∈ S we have x ≥ m so
x = g(x) ≥ g(m), and hence g(m) is a lower bound for S in A. Now suppose s is another
such lower bound. If s > g(m) then g(s) > g(m) so that s > m and then s ∈ S, so that s
is the least element of S and so S indeed has a greatest lower bound (namely s). On the
other hand, if s ≤ g(m) for all lower bound s of S then g(m) is the greatest lower bound
and again S has a greatest lower bound. This proof is rather cunning: it is not always true
that g(m) is the infemum of S, but if it is not then S has a least element, which is even
better! For the converse, suppose the property satisfied. We let g(m) be the greatest lower
bound in A of S = {x ∈ A:x ≥ m}. Then g is order preserving, and if m ∈ A then it is
obvious that g(m) = m.:-) For a counter-example, the rationals are not an (order-)retract
of the reals.

In a groupoid category, the only morphisms are the isomorphisms, and they are
obviously mono, epi, retractable and sectionable. This applies in particular to discrete
categories and group categories. If a preordered set is made into a category, then all
morphisms are mono and epi, but the only retractable or sectionable morphisms are
the isomorphisms (which, if the preordered set was actually partially ordered, are the
identities).

3. Simple universal properties.

We now turn to the study of the most common universal properties. The general study of
all universal properties will be done later on.

The most important universal construction is the product, so we start with that. Let
C be a category, and (Xi)i∈I a family of objects of C. By a product of the (Xi) we mean
an object X of C and a family (pi)i∈I of morphisms pi:X → Xi that satisfy the following
(“universal”) property: if (fi)i∈I is a family of morphisms fi:T → Xi, then there exists a
unique morphism f :T → X such that fi = pif for every i ∈ I.

We shall frequently say that X is a product (rather than the pair (X, (pi)i∈I));
moreover, we say that pi:X → Xi are the canonical morphisms (or projections, or some
similar such term).

An important thing is that if a product exists, it is unique up to canonical
isomorphism, in the following sense: if (X, (pi)) and (Y, (qi)) are two products of the
(Xi), then by the universal property of X there exists an arrow q:Y → X such that
qi = piq for every i, and by the universal property of Y there exists an arrow p:X → Y
such that pi = qip for every i. But then pi = piqp for every i, and so by the (uniqueness
part of the) universal property of X, we have qp = 1X , and similarily we have pq = 1Y .
Thus p and q are reciprocal isomorphisms between X and Y , and they are compatible with
the projections in the sense that qi = piq and pi = qip for every i. Moreover, it is clear
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that they are the only such isomorphisms. Thus, if it exists, we can speak of the product.
We write it

∏
i∈I Xi, and if I is finite, we write X1 × · · · ×Xn instead of

∏n
i=1Xi.

If the product of an arbitrary (set indexed) family of objects exists in C, we say that
C “has arbitrary (small) products”. If the product of a finite family of objects exists, we
say that C “has finite products”.

One particularily important product is the product of the empty family, if it exists:
it is an object X such that for any object T there exists a unique arrow T → X. Such an
object is also called a (the) terminal (or universal, or universally attracting) object. It is
normally written 1 (if this causes no ambiguity). The product of a family with just one
member, of course, exists in any category, and is just that member itself.

There are a couple of nice properties of products. To name a few:

X × (X ′ ×X ′′) = X ×X ′ ×X ′′ = (X ×X ′)×X ′′

X ×X ′ = X ′ ×X

1×X = X = X × 1∏
i∈I

∏
j∈J

Xij =
∏

(i,j)∈I×J

Xij

where each equal sign is actually a canonical isomorphism (but anyhow each term only
exists up to canonical isomorphism), and whenever one side exists then so does the other
one. This is all quite trivial; for example, to verify that X × (X ′ ×X ′′) = X ×X ′ ×X ′′,
it suffices to verify that X × (X ′ ×X ′′) (with the obvious projection maps) actually is a
product of X,X ′, X ′′, and that is extremely easy.

Naturally, if all the factors of a product are equal (isomorphic) to a single object X0,
then the product is written XI

0 . We have X0
0 = 1, X1

0 = X0, and Xn
0 is called the n-th

power of X0.
One word of warning: one may be tempted to think that the pi are epimorphisms

or sectionable or some kind of thing. That is not true in general, as the example of
the cartesian product of a non empty set with an empty set will show. However if the
category C satisfies the property that Hom(A,B) is non empty for any two objects A,B,
then the pi are sectionable (hence epi). Indeed, let i ∈ I; for each j ∈ I with j 6= i, choose
a map fj :Xj → Xi, and let fi:Xi → Xi be the identity. Then there is a unique map
f :Xi → X such that fj = pjf and in particular 1Xi = pif , which show that f is a section
of pi.

Now let us tour briefly the “classical” categories to see whether they have products.
The archetypal example is Set: it has arbitrary products, and the categorical product

of a family of sets is just the cartesian product. That is obvious. And so are the other
examples that we will give. In the category PSet, the product is the cartesian product,
the base point of the product being the point which projects to the the base point on
each component. In the category Top, arbitrary products exist, and they are just the
ordinary (Tychonoff) cartesian product. The same is true in HausTop, HomoTop and
HausHomoTop. In the categories Group, AbGroup, Ring, ComRing, PsRing,
RMod, GSet, and a couple of other ones too, products are just ordinary cartesian
products with termwise operations. Even in the categories CrMan and HolMan (which
are otherwise pretty nasty categories on the whole) finite products exist. In the category
POSet, arbitrary products exist: the underlying set to

∏
i∈I Xi is the cartesian product
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of the underlying sets, and the order is defined by (xi) ≤ (yi) iff xi ≤ yi for all i. In the
category TOSet, on the other hand, almost no product exists, and the same holds for the
category Field (the latter does not even have a terminal object).

On a discrete category, a product exists iff all its factors are equal, and then the
product in question is also equal to the factor in question. In a group category, the unique
object admits powers other than 1 iff the group is trivial. If a partially ordered set is made
into a category, then the product of a family is but its greatest lower bound (infemum).

Having seen the product, we now move to the coproduct. That is extremely easy: the
coproduct of a family of objects of C is the product in Cop. In other words: let (Xi)i∈I
be a family of objects of C. By a coproduct (or sum, or free sum) of the (Xi) we mean
an object X of C and a family (ji)i∈I of morphisms ji:X → Xi that satisfy the following
(“(co)universal”) property: if (fi)i∈I is a family of morphisms fi:Xi → T , then there exists
a unique morphism f :X → T such that fi = fji for every i ∈ I.

We will not repeat for the coproduct all that we said for the product. Of course, the
coproduct, when it exists, is unique up to canonical isomorphism. We write

∐
i∈I Xi for

the coproduct of the Xi. The coproduct of the empty family (if it exists) is called the
(a) initial (or couniversal or universally repelling) object, and is frequently written 0. The
coproduct

∐n
i=1Xi of a finite family is written X1 q · · · qXn, and we have all the evident

identities. The ji are not mono in general, but they are retractable (hence mono) if all the
Hom(A,B) are non empty.

In the category Set, the coproduct is the disjoint union. In the category PSet, the
coproduct is the disjoint union but with base points identified. In the categories Top,
HausTop, HomoTop and HausHomoTop, the coproduct is the disjoint union with the
obvious structure. In the categories CrMan, countable coproducts exist and they are
the disjoint sum of manifolds (we have to limit ourselves to the countable case since our
manifolds are assumed separable). In the category POSet, the coproduct is the disjoint
union, with elements from two different terms being non comparable. In the algebraic
categories, things are a little less pleasant. In Group, coproducts exist (arbitrary ones
as a matter of fact, but let us stick to finite ones for simplicity) and they are the free
group product . In the category Ring, coproducts exist, but they are something ghastly,
and I do not know their name (“braided tensor products” perhaps ?). In the category
ComRing, coproducts exist, and finite coproducts are tensor products over Z (infinite ones
are the inductive limit of all the finite tensor products), and this applies mutatis mutandis
to RComAlg (replace Z by R). In the category RMod (this case includes AbGroup
as already noted) arbitrary coproducts exist and they are the ordinary direct sum (note
that therefore finite products and coproducts coincide). Here again, the categories TOSet
and Field behave badly, as they do not have any interesting coproducts.

We finish products and coproducts by noting one last interesting fact: in the example
of a formal system made into a category given previously (with all the appropriate
identifications made), the product of propositions A1, . . . , An is A1∧· · ·∧An (corresponding
to the fact that proving Ai from B for each i is the same as proving A1∧· · ·∧An from B),
and similarily their coproduct is A1 ∨ · · · ∨An.

Now let us turn to equalizers and coequalizers. If C is a category, and f, f ′ ∈
Hom(A,B), then an equalizer of f, f ′ is a morphism e:E → A such that fe = f ′e and that
is universal among such morphisms, in other words if g:T → A satisfies fg = f ′g then
there exists a unique u:T → E such that g = eu. The universal property implies that
the equalizer is unique up to canonical isomorphism (we leave that as an exercice to the
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reader, since it shall be proven later on in the more general setting of projective limits).
Moreover, the equalizer is a monomorphism. :-(Indeed, if eh = eh′ then since feh = f ′eh
it follows by the uniqueness part of the universal property that h is the only morphism u
such that eh = eu, and so h = h′.:-) And we can therefore consider it as a subobject of A,
which is then unique, not just up to isomorphism.

In the category Set, the equalizer of f, f ′:A→ B is the subset of A consisting of the
points of A where f and f ′ coincide. The same is true in PSet, in Top and HausTop (with
the induced topology on the subset in question), in Group, Ring, ComRing, RMod,
etc (with the induced algebraic structure), and in POSet and TOSet.

A coequalizer, of course, is an equalizer in the opposite category: if f, f ′ ∈ Hom(A,B),
then a coequalizer of f, f ′ is a morphism e:B → E such that ef = ef ′ and that is universal
among such morphisms, in other words if g:A → T satisfies gf = gf ′ then there exists a
unique u:E → T such that g = ue. The universal property implies that the coequalizer is
unique up to canonical isomorphism. Moreover, it is an epimorphism, and we can therefore
consider it as a quotient object of B, which is then unique, not just up to isomorphism.

In the category Set, the coequalizer of f, f ′:A → B is the quotient of B by the
equivalence relation generated by the pairs (f(x), f ′(x)) for x ∈ A. Similarily, in Group,
the coequalizer of f, f ′:A→ B is the quotient of B by the normal subgroup generated by
the f(x) f ′(x)−1 for x ∈ A. In RMod, the coequalizer of f, f ′:A→ B is the quotient of B
by the image of f − f ′. In ComRing (resp. Ring), the coequalizer of f, f ′:A→ B is the
quotient of B by the ideal (resp. two-sided ideal) generated by the f(x)− f ′(x).

Another important universal construction is that of pullbacks and pushouts, also called
respectively fiber(ed) products and amalgamated sums. We start with the fibered product.
There are several ways to describe it, and we enumerate a few, leaving to the reader to
show that they are equivalent. We only consider the fibered product of two objects over
a third (the only case which really ought to be called a pullback), leaving the obvious
generalization to the reader (or to later in the general formalism of projective limits). Let
C be a category and s1:X1 → Y and s2:X2 → Y be two Y -objects (that is, two morphisms
with a common goal Y ). We say that a Y -object s:X → Y , together with two projection
maps p1:X → X1 and p2:X → X2, is a (the) fibered product of s1 and s2, or of X1 and X2

over Y (relative to the morphisms s1 and s2), or any similar terminology iff any of the
following equivalent conditions are satisfied:

1) s = s1p1 = s2p2 and it is the universal such morphism, in the sense that if
f1:T → X1 and f2:T → X2 are morphisms such that s1f1 = s2f2 then there exists a
unique f :T → X verifying f1 = p1f and f2 = p2f .

2) s is the product of s1 and s2 in the slice category C ↓ Y , p1 and p2 being the
projections of this product.

3) p1:X → X1 is the universal map over s2 with target X1; in other words, if t:T → X1

is an arrow and we have a morphism t → s2 in Cmor, then it factors uniquely through
(p2, s1): p1 → s2 with the second part of the factor being the identity 1X1

. s is then the
obvious map s = s1p1 = s2p2.

4) (Assume that the product Z = X1×X2 exists, and q1:Z → X1 and q2:Z → X2 are
its canonical projections.) The map e:X → Z obtained from p1 and p2 by the universal
property of Z is the equalizer of s1q1 and s2q2, s is s1q1e = s2q2e and p1, p2 are q1e, q2e.

Of course, the fibered product, when it exists, is unique up to a canonical isomorphism
that commutes with the projections.

13



We also say that p1 is the pullback of s2 along s1, or that the diagram

X
p2−→ X2

p1

y �
ys2

X1
s1−→ Y

is cartesian (that is the meaning of the little square in the middle). The notation for the
fibered product is X = X1 ×Y X2 (that is not very correct, of course, since it does not
specify which morphisms X1 → Y and X2 → Y are used, but in practice it rarely leads to
confusion).

We mention a rather important fact: suppose that the diagram

A
f−→ B

g−→ C
u
y v

y w
y

A′
f ′−→ B′

g′−→ C ′

is commutative, and that the right hand square is cartesian. Then the left hand square is
cartesian iff the outer rectangle is so. :-(Suppose the left hand square is cartesian, and let
T be a test object in C, and h:T → A′ and z:T → C be morphisms such that wz = g′f ′h.
Then by the cartesianness of the right square, there is a (unique) y:T → B such that z = gy
and f ′h = vy. This in turn, by the cartesianness of the left square, determines a (unique)
x:T → A such that y = fx and h = ux. So we have found an x:T → A such that z = gfx
and h = ux. If we now have two such x, call them x1, x2, then letting yi = fxi, since
z = gyi and f ′h = vyi, the uniqueness part of the cartesianness of the right square gives
y1 = y2, and this in turn gives x1 = x2 by the uniqueness part of the cartesianness of the
left square. This finishes the proof of the fact that the rectangle is cartesian. Conversely,
assume that the rectangle is cartesian, and let T be a test object in C, and h:T → A′

and y:T → C be morphisms such that vy = f ′h. Put z = gy. Then we have wz = g′f ′h,
so by the cartesianness of the rectangle there exists a (unique) x:T → A such that gfx = z
and ux = h. But then we have gy = z = gfx, and vy = f ′h = f ′ux = vfx, and by the
uniqueness part of the cartesianness of the right square, this implies y = fx, so that we
have found x:T → A such that y = fx and h = ux. If we now have two such x, call
them x1, x2, then fx1 = y = fx2 so a fortiori gfx1 = gfx2, and since also ux1 = h = ux2,
by the uniqueness part of the cartesianness of the rectangle, we get x1 = x2.:-) This result
goes by the name of the “pasting lemma”.

We note a few identities concerning fibered products, leaving to the reader to state
them rigorously and prove them (and possibly prove some other, similar, ones, too).

X ×Y X ′ = X ′ ×Y X

X ×1 X
′ = X ×X ′

X ×X X ′ = X ′

X ×Y (Y ×Z W ) = X ×Z W

(the last identity is just the pasting lemma).
A little more terminology: if p:X → S is a morphism and f :S′ → S is another

morphism, then the pullback of p along f (if it exists) is sometimes written pS′ :XS′ → S′
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(if no confusion is possible), and called the map “obtained from p by applying the change
of base S′ → S”. For those who have read the section below on functors, the map f
determines a covariant functor from the category C ↓ S of S-objects to the category
C ↓ S′ of S′-objects: if X → Y → S is a morphism of S-objects then it determines a
morphism XS′ → YS′ → S′ of S′-objects.

If Φ is a class of morphisms of C (or, what amounts to the same, a property that
morphisms of C can have), we say that Φ is “stable under base change” iff for every
f :S′ → S and every p:X → S in Φ, the pullback pS′ :XS′ → S′ of p along f belongs to Φ.
For example, monomorphisms remain monomorphisms after an arbitrary base change.
:-(Suppose p:X → S is a monomorphism, f :S′ → S an arbitrary morphism, and we
must show that pS′ :XS′ → S′ is a monomorphism. But if h, h′:T → XS′ are such that
pS′h = pS′h

′, then letting hS :T → X be the composite of h:T → XS′ and of the canonical
map g:XS′ → X, and similarily for h′S , we have phS = fpS′h = fpS′h

′ = ph′S , so hS = h′S .
That is, we have gh = gh′ and also ph = ph′. By the uniqueness part of the universal
property of pullbacks, that implies h = h′, what was to be shown.:-)

If h:X → Y is any morphism in a category C, then we can consider the pullback
of h along itself (provided it exists, of course): this two morphisms p1, p2:X ×Y X → X,
called the kernel pair of f . We have hp1 = hp2, and if f1, f2:T → X satisfy hf1 = hf2

then there exists a unique f :T → X ×Y X such that p1f = f1 and p2f = f2. The
interest of the kernel pair is that p1 (or p2) is an isomorphism iff h is a monomorphism.
:-(If h is a monomorphism then it is easy to check that X itself, with the projections
1X , 1X :X → X, constitutes a fibered product of X with iself over Y . By the uniqueness
of the fibered product, it follows that p1, p2 are isomorphisms. Conversely, if p1 is an
isomorphism, then we may identify X ×Y X with X by means of p1 (note that we are
not yet saying that p2:X → X must be the identity, or even an isomorphism), and the
uniqueness clause in the universal property of the fiber product assures that for f :T → X,
the arrow hf determines f , and thus h is mono. Retrospectively, we see that p2:X → X
is the identity.:-) This property somehow explains the name “kernel pair”.

Some more terminology: if f :X → Y is a morphism in C, then by the universal
property of X ×Y X (if it exists), there exists a unique map ∆f :X → X ×Y X such
that p1∆f = p2∆f = 1X . By what we have just seen, ∆f is an isomorphism iff f
is a monomorphism, and in all cases, ∆f is certainly retractable. We call ∆f the
diagonal morphism associated to f . More generally, if X → Y and X ′ → Y are Y -
objects and u:X → X ′, then the unique arrow Γu:X → X ×Y X ′ such that p1Γu = 1X
and p2Γu = u is called the graph of u (over Y or some such phrase); the diagonal is the
graph of the identity.

In the category Set, the fiber product of two morphisms s1:X1 → Y and s2:X2 → Y
is X = {(x1, x2): s1(x1) = s2(x2)}, with the maps p1: (x1, x2) 7→ x1 and p2: (x1, x2) 7→ x2.
We leave the case of the other customary categories to the reader (they are all very similar
— and follow quite trivially from the products and the equalizers).

Of course, by dualizing all that concerns fibered products, we get the notion of an
amalgamated sum. If s1:Y → X1 and s2:Y → X2 are morphisms, then their amalgamated
sum (if it exists) is a morphism s:Y → X together with “injection” morphisms j1:X1 → X
and j2:X2 → X, such that for any morphisms f1:X1 → T and f2:X2 → T verifying
f1s1 = f2s2, there exists a unique f :X → T such that f1 = fj1 and f2 = fj2. We write
X = X1 qY X2. We also say that j1 is the pushout of s2 along s1. The dual notion to a
cartesian square is that of a cocartesian square, the dual notion to a kernel pair is that of

15



a cokernel pair. There is also a codiagonal morphism ∆∗f :X qY X → X associated to a
morphism f :Y → X. However, one does not usually consider cographs.

Amalgamated sums are a more delicate matter in the usual categories. In the category
ComRing, for example, the amalgamated sum is the tensor product. In the category
Group, it is what is usually called the amalgam of two groups. In the category Set, the
amalgamated sum of s1:Y → X1 and s2:Y → X2 is the quotient of X1 q X2 (disjoint
union) by the equivalence relation generated by the (s1(y), s2(y)) for y ∈ Y .

Now, that is about enough universality for the moment, and we move to a more
relaxing topic.

4. Functors.

We now have a rather good idea of what a category is, and we move on to describe what
morphisms (to be quite accurate, I should say 1-morphisms) between them are.

Let C and D be two categories. Then a (covariant) functor F from C to D, in
symbols F: C  D, is a map (also written F) from ob C to ob D, together with, for
every A,B ∈ ob C, a map (also written F) from Hom(A,B) to Hom(FA,FB), such that
F1A = 1FA for all A ∈ ob C, and if f :A→ B and g:B → C in C then F(gf) = (Fg)(Ff).
In other words, a functor is a map on the objects together with a map on the arrows which
satisfy the obvious relations.

If F: C  D is such that Hom(A,B) → Hom(FA,FB) is injective (resp. surjective)
for every A,B ∈ ob C, then we say that F is faithful (resp. full). A functor is said to be
injective (resp. surjective) iff it is so on the objects; more importantly, a functor F: C D
is said to be essentially injective (resp. essentially surjective) iff FA ∼= FB implies A ∼= B
(resp. for all B ∈ ob D there exists A ∈ ob C such that B ∼= FA). Obviously, a full and
faithful functor is essentially injective.

If D is a subcategory of C, then we have a canonical faithful and injective functor
I: D C; it is full iff D is a full subcategory of C.

If F: C D and G: D E are functors, then there is a functor GF: C E, defined
in the obvious way, namely: (GF)A = G(FA) for any object A of C (and we therefore
write GFA) and (GF)f = G(Ff) for any object f of C (and we therefore write GFf). This
composition of functors is associative whenever that makes sense, and for each category C
there is a functor 1C: C  C which is the identity on the objects and the morphisms,
and which acts as a two-sided unit element for composition. Thus the class Category of
categories (say of small categories to avoid set-theoretical difficulties) forms a category with
functors as morphisms. For this reason, if C and D are categories, the class of functors
from C to D is sometimes written Hom(C,D), or even Hom(C,D); still, the notation DC

is more common (and we shall later see how to make it into a category). Of course, two
categories C and D are said to be isomorphic iff they are so in Category, that is iff there
exist functors F: C  D and G: D  C such that GF = 1C and FG = 1D. We write
C ∼= D. We shall later define a weaker notion (equivalence of categories) which turns out
to be more important.

We note one more little point: if p: C  D is a functor and U an object of D, then
the fiber of p over U , sometimes written p−1(U), and sometimes even CU if no confusion
is possible (highly unlikely, I’d say), is the subcategory of C whose objects are those which
go to U in D, and whose morphisms are those which go to 1U in D (it is in general
not a full subcategory of C). More generally, one can define the inverse image by p of a
subcategory E of D (in the obvious way: objects are those which go to objects of E and
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ditto for morphisms). The case of p−1(U) is the particular case when U is identified with
the discrete subcategory of D whose only object is U .

If C and D are two categories, functors from the category Cop to the category D
are particularily important; enough for them to merit a special name: they are called
contravariant functors from C to D. In contrast, ordinary functors from C to D are
called covariant, and any functor is always assumed to be covariant unless mention of the
contrary. Note that functors from Cop to D can be identified (in the obvious way) with
functors from C to Dop. We shall do so (and similarily identify functors from C to D with
functors from Cop to Dop); in this way, a covariant or contravariant functor from C to D
can be composed with a covariant or contravariant functor from D to E, and the result is
covariant or contravariant according as the two functors had same or different variances.
We let the reader fill in the details, and state and prove all the obvious propositions.

Similarily, one can define functors of several variables: if C1, . . . ,Cn and D are
categories, a functor C1 × · · · × Cn  D is called a (covariant) functor of n variables
ranging respectively C1, . . . ,Cn, to D (or with values in D). Similarily, one can define
functors in several variables, covariant in some and contravariant in the others. We leave
the details to the reader. We note in particular that by fixing one of the variables in a
functor of n variables we obtain a functor of the n− 1 other variables in the obvious way
(well, perhaps this is not so obvious; for example, if F: C×D E, and A ∈ ob C then we
define the functor f = F(A,—) by letting f(B) = F(A,B) for B ∈ ob D and f(f) = F(1A, f)
for f :B → B′ a morphism in D).

If C is one of the categories PSet, Top, HausTop, Group, AbGroup, Ring,
ComRing, Field, RMod, etc. we have a functor F: C→ Set, called the forgetful functor,
which takes an object of C to the underlying set, and a morphism of C to the underlying
map of sets. This functor is faithful. A concrete category is a category together with a
faithful functor to the category Set. Similarily, there are (partially) forgetful functors such
as Group → PSet or Ring → AbGroup, but these are less interesting in many ways,
and unless otherwise specified, the forgetful functor is always the one which goes to Set.

If C is any category, then we have a very important functor of two variables of C,
contravariant in the first and covariant in the second, with values in Set, namely the
functor Hom(—,—), defined in the obvious way on the objects, and on the morphisms by

Hom(f, g): Hom(A,B)→ Hom(A′, B′)

α 7→ gαf

if g:B → B′ and f :A′ → A (note the direction of the latter arrow: Hom is contravariant in
the first variable) in C. We shall see that partial maps y(B) = Hom(—, B) (the “Yoneda
embedding”) and Hom(A,—) are particularily important.

A similar functor is this: suppose C is a category which admits finite products, and
consider the functor — ×— of two covariant variables in C with values in C, defined as
follows: A×B is the product of A and B, and if f :A→ A′ and g:B → B′ are morphisms,
then f × g is the unique morphism u:A×B → A′×B′ such that p′1u = fp1 and p′2u = gp2

where p1:A × B → A, p2:A × B → B, p′1:A′ × B′ → A′ and p′2:A′ × B′ → B′ are the
projection morphisms. Such a morphism exists by the universal property of A′ × B′. We
leave it to the reader to likewise define the functor — q— (with the same variables and
variances) in a category which admits finite coproducts.

Other classical examples of functors come from algebraic topology and cohomology
theory. For example, the homology functor is a functor H: Homo∂AbGroup  
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GradAbGroup defined by HnK = ker ∂n/ im ∂n+1 and the evident (?) action on
morphisms. (This is a general fact: to define a functor, one often just gives the
action on the objects and leaves it to the reader to figure out what the action on the
morphisms is.) The homotopy functor is a functor π: PHomoTop  GroupN which
takes a pointed space (X,x) to the sequence of its homotopy groups (πn(X,x)). The
singular complex functor is a functor S: HomoTop  Homo∂AbGroup which takes
a topological space to its singular complex (the most useful functor is of course the
singular homology functor HS: HomoTop  GradAbGroup, often written H instead
of HS).

If 0 ≤ s ≤ r ≤ ω, then there is a “weakening of structure” (sometimes called forgetful)
functor CrMan  CsMan. If s = 0 and r > 0 then it is known (though by no means
obvious) that this functor is neither essentially injective nor essentially surjective. When
s > 0, on the other hand, the functor is essentially injective and essentially surjective, as is
stated by an approximation theorem. (The functor is always faithful, and is full iff s = r
of course, but that is more or less trivial.)

If two groups G,G′ are made into categories, then a functor F:G  G′ is just the
same as a group homomorphism G→ G′. If two preordered sets are made into categories,
then a functor from one to the other is just the same as a preorder-preserving map between
them.

5. Natural transformations.

Functors alone are not a very fascinating subject. Where things become truly fascinating
is that functors between two categories can themselves be considered as the objects of a
category, whose morphisms are called morphisms of functors or “natural transformations”
(or “natural maps”, or “functorial transformations” but this last terminology seems a little
confusing).

Suppose that C and D are two categories, and F,G: C  D are functors between
them. Then a natural transformation α from F to G, in symbols α:F→ G, is a map from
the class of objects of C to the class of morphisms of D, such that for every A ∈ ob C we
have α(A):FA→ GA, and which is natural in the sense that for every morphism f :A→ B
in C, the following diagram commutes:

FA
Ff−→ FB

α(A)
y yα(B)

GA
Gf−→ GB

In other words, for every objects A,B of C and every morphism f :A → B, we have
α(B) (Ff) = (Gf)α(A). Thus, α should be viewed as a collection of maps from the FA
to the GA, which are compatible with one another. We will sometimes write αA instead
of α(A), as typography and clarity of notation require.

If F: C D is any functor, then we have an obvious natural “identity” transformation
1F:F → F, which takes any object A of C to the identity map 1FA:FA → FA.
If F,G,H: C  D are three functors, and α:F → G and β:G → H are natural
transformations, then we have a natural transformation βα:F → H (the “composition”
of β and α) given by (βα)(A) = (β(A))(α(A)) for every object A (or to write things
differently, (βα)A = βAαA). Associativity holds whenever it makes sense, and the identity
natural transformations are two-sided unit elements for the composition. Thus, if C and D
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are categories (and say, D is small), then we have a category CD of functors from D to C,
whose objects are the functors D C and whose morphisms are natural transformations
between these. One immediately verifies that if the category D is discrete, then the
category CD just defined can be identified with the category CobD (a functor from D
to C is just an ob D-indexed family of objects of C, and a natural map between functors
is a ob D-indexed family of maps between the corresponding objects).

We also note that functors and natural transformations can be composed with one
another in the following way: if F: C  D is a functor and α:G → H is a natural
transformation, where G,H: D  E, then we have a natural map αF:GF → HF, given
by (αF)(A) = α(F(A)). On the other hand, if α:F→ G is a natural transformation, where
F,G: C D, and H: D E is a functor, then we have a natural map Hα:HF→ HG, given
by (Hα)(A) = H(α(A)). The identity functors act as unit elements for this composition
law; as for the identity natural transformations, they are turned one into another by
composition by a functor. Unfortunately, not all associativity rules hold: essentially,
they hold when the composition of natural maps does not come into the game, and
that one is distributive. In other words, with the evident notations, (FG)H = F(GH),
(FG)α = F(Gα), (Fα)H = F(αH), (αG)H = α(GH), (FG)H = F(GH), F(αβ) = (Fα)(Fβ),
(αβ)F = (αF)(βF) and (αβ)γ = α(βγ).

If α:F → G, where F,G: C  D, is a natural transformation such that α(A) is an
isomorphism for every A ∈ ob C, then α is an isomorphism as a morphism of functors,
and conversely; the inverse is given by α−1(A) = α(A)−1. Such a natural tranformation
is called a natural isomorphism. Of course, we write F ∼= G and we say that the functors
F and G are isomorphic. Because of the previous paragraph, isomorphism of functors is
compatible with composition, and the class of (say, small) categories with isomorphism
classes of functors as morphisms forms a category, EqCategory. When two categories C
and D are isomorphic in EqCategory, in other words when there exists functors F: C D
and G: D C such that GF ∼= 1C and FG ∼= 1D, we say that C and D are equivalent and
we write C u D. We also say that F and G are quasi-inverse to one another.

We now prove the important fact that a necessary and sufficient condition for a functor
F: C  D to admit a quasi-inverse is for it to be full, faithful and essentially surjective.
Indeed, suppose GF ∼= 1C and FG ∼= 1D for some functor G: D C. Then F is essentially
surjective since any A ∈ ob D is isomorphic (indeed, naturally isomorphic) to F(GA).
If f, f ′:A → B are arrows in D such that Ff = Ff ′ then then GFf = GFf ′. But
by composing the arrow GFf :GFA → GFB with the natural arrows A → GFA and
GFB → B, we obtain the arrow f again (that is the naturality statement), and similarily
for f ′. So GFf = GFf ′ implies f = f ′, which shows the faithfulness of F. The fullness
assertion is similar: if f :FA → FB is an arrow in D, then Gf :GFA → GFB composed
with the natural maps A→ GFA and GFB → B gives an arrow A→ B whose image by F
is f . Conversely, suppose F: C  D is full, faithful and essentially surjective. For every
object A ∈ ob D, choose an object GA ∈ ob C such that FGA ∼= A, and choose such an
isomorphism α(A):FGA

∼→ A. For f :A → B a morphism in D, define Gf as the inverse
image by F of the composite arrow α(B)−1 f α(A) (this inverse image is well defined since
F is full and faithful). One checks easily that G is a functor, that the α(A) define a natural
isomorphism α:FG

∼→ 1D. As for the natural isomorphism in the other direction, it is
obtained thus: we have α(FA):FGFA

∼→ FA, and since F is full and faithful, this comes
from an isomorphism GFA

∼→ A, which is again natural in A. Hence the result.

A natural transformation between contravariant functors, say, from C to D is just
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a natural transformations between these functors when viewed as (covariant) functors
from Cop to D (or, what amounts to the same, from C to Dop). Similarily, a natural
transformation between functors of several variables is defined by considering these as
functors from an appropriate product category. For example, suppose F and G are functors
of two variables, contravariant in the first and covariant in the second, both ranging in a
category C, and taking values in a category D (that is, F and G can be identified with
functors Cop ×C  D). Then a natural transformation α:F → G is the giving, for two
objects A,A′ of C, of a morphism α(A,A′):F(A,A′) → G(A,A′), such that if f :B → A
and f ′:A′ → B′ are two arrows in C, then the following square is commutative:

F(A,A′)
F(f,f ′)−→ F(B,B′)

α(A,A′)
y yα(B,B′)

G(A,A′)
G(f,f ′)−→ G(B,B′)

(the only very moderate subtelty is the direction of the arrow f , which is B → A and not
the other way around, since the functor is contravariant in the first variable).

We now proceed to give examples of natural maps, which should make it clear why
they correspond to “canonical” morphisms.

To start with a very classical example (though I do not believe it is really the most
illuminating possible) let R be a ring which we assume is commutative for simplicity. Then
we have a contravariant functor D from RMod to RMod, which takes an R-module M
to its dual M∗ = L(M,R) (which is just the set Hom(M,R) with the obvious R-module
structure on it), and a linear map f :M → N to the (transpose) map f∗:N∗ → M∗

which takes ϕ to ϕf . Then the functor D2 (the composite of D with itself) is a covariant
functor RMod  RMod. If M is an R-module, then we have a “canonical” morphism
ι(M):M → M∗∗ = D2M which takes an element x of M to the linear form ϕ 7→ ϕ(x)
on M∗. It is painful but completely trivial to verify that ι defines a natural map
1RMod → D2: if f :M → N is a linear map of R-modules, then f∗∗:M∗∗ → N∗∗ is given
by ξ 7→ (ϕ 7→ ξ(ϕf)), and so if ξ is the form ϕ 7→ ϕ(x), its image by f∗∗ is ϕ 7→ ϕf(x),
which is also the image by D2 of the element f(x), and that is exactly what naturality
means.

Similarily, consider the two functors ——×— and ((—)—)— of three variables in Set,
one covariant and two contravariant, and with values in Set. In other words, the functors
in question are F which takes (A,B,C) to AB×C and (f, g, h) (where f :A→ A′, g:B′ → B
and h:C ′ → C) to the map AB×C → A′B

′×C′ which takes γ to (x, y) 7→ f(γ(g(x), h(y))),
and G which takes (A,B,C) to (AB)C and (f, g, h) (ditto) to the map (AB)C → (A′B

′
)C
′

which takes γ to y 7→ f(γ(h(y))(g(x))). Then there is a natural isomorphism between F
and G, given by α(A,B,C):AB×C → (AB)C , which takes γ:B × C → A to y 7→ (γ(·, y)).
This is what is meant by saying that AB×C and (AB)C are “canonically” (or “naturally”)
isomorphic. Similarily, we leave it to the reader to formulate the fact that (A × B)C

and AC ×BC are naturally isomorphic (see the next paragraph for a generalization).
To generalize the last example of the previous paragraph, note that the functor

—— (of two variables, covariant in one and contravariant in the other) on Set is a
particular case of the functor Hom(—,—) (of two variables, contravariant in the first
and covariant in the second, and with values in Set) on any category. So if C is a
category which admits products, then we can consider the two following functors of three
variables (one contravariant and two covariant, in C) with values in Set: the functor
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F = Hom(—,— ×—) takes (A,B,C) to Hom(A,B × C) and does the obvious thing on
morphisms (it is the composite of the functors — ×— and Hom(—,—) which we have
described previously), and the functor G = Hom(—1,—2) × Hom(—1,—3) which takes
(A,B,C) to Hom(A,B) × Hom(A,C) and does the obvious thing on morphisms. Then
there is an isomorphism between F and G, which is given by α(A,B,C): Hom(A,B×C)→
Hom(A,B)×Hom(A,C) taking γ to (p1γ, p2γ) where p1:B ×C → B and p2:B ×C → C
are the projections. Note that the second functor, G, exists in any category, even one
which does not have products (we only need Set to have products, and it certainly does):
this allows us to consider morphisms A → B × C, even if B × C does not actually exist,
simply as pairs made up by a morphism A→ B and a morphism A→ C.

While we’re at it, why are the canonical maps p1:A × B → A and p2:A × B → B
called canonical? Because they correspond to natural maps — ×— →—...

Also, the Hurewicsz homomorphism should really be regarded as a natural
transformations between functors PHomoTop  GroupN, namely the homotopy
(sequence) and the homology (sequence) functors.

For a stranger example, let us consider the functor 1Set: Set  Set, and let us ask
what are the natural maps 1Set → 1Set. If α is such a natural map, then for any set A
we are given a map αA:A → A. Now if x ∈ A, then by considering the injection arrow
f : {x} → A and using naturality, we see that we must have αAf = fα{x}, in other words
αA(x) = x; thus αA is the identity for every set A, and α: 1Set → 1Set is the identity.
In more intuitive terms, there is no way to map a set to itself canonically except with the
identity . On the other hand, if we replace Set by PSet, then the functor 1PSet admits
a non identity endomorphism, namely the natural map b which is such that b(A) maps
the pointed set A to its base point (exercice: show that this is the only one). Also note
that in the full subcategory C of Set consisting of sets with exactly two elements, the
identity functor 1C: C  C has a non identity automorphism, namely the natural map
which permutes the two elements of any pair.

Suppose P and P ′ are two partially ordered sets, and we make them into categories
P and P′ in the usual way. Then the objects of the category P′P (namely functors from
P to P′) can be identified with order preserving maps from P to P ′. Interestingly, the
category P′P corresponds itself to a partially ordered set, the order being induced by the
product order on P ′P .

If G and G′ are groups, and we make them into categories G and G′ in the usual
way, then the objects of the category G′G can be identified with group homomorphisms
G→ G′. If ϕ and ψ are such homomorphisms, and we identify them with the corresponding
functors, then a natural map α:ϕ → ψ is an element g = α(•) of G′ such that for any
element f ∈ G (i.e. arrow f : • → • in G) the diagram

• ϕ(f)−→ •
g
y yg
• ψ(f)−→ •

commutes, in other words ψ(f) = g ϕ(f) g−1 for every f ∈ G. Thus, the category G′G is
a groupoid, whose objects are the morphisms G → G′, and with two morphisms deemed
isomorphic iff they are conjucate by an element of G′. This and a little bit of thought (or
perhaps even without both) shows that two groups are equivalent as categories iff they are
isomorphic.
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Now for a few examples of equivalent categories. Recall that for any category C
we had defined the reduced category of C to be the full subcategory C̄ of C whose
objects are a system of representatives for the isomorphism classes of objects of C. Up
to isomorphism, C̄ does not depend on the choice of these representatives (note, however,
that the isomorphism in question is not canonical, since it depends on choosing a lot of
isomorphisms between the two systems of representatives). The categories C and C̄ are
equivalent, as the inclusion functor I: C̄ → C is full, faithful and essentially surjective.
However, they are not isomorphic in general. In the case of Set, for example, we can
take the full subcategory of cardinals as the reduced category. Informally, that is what
all equivalences of categories are: they do “essentially nothing” on the objects and really
nothing on the morphisms.

The reduced category is important for the following reason: if C and D are categories,
then we have C u D iff C̄ ∼= D̄. We leave the simple proof as an exercice for the reader
(hint: C u D iff C̄ u D̄).

Notice that if C is a groupoid (recall that this is a category in which all arrows
are isomorphisms) then C̄ is the disjoint sum of groups. In other words, a groupoid is
(equivalent to) a set in which certain elements have non trivial automorphisms. The group
of automorphisms of an object of a groupoid is sometimes called its stabilizer. This is
due to the following important example: suppose G is a group and X a G-set (i.e. a set
on which G acts), and make X into a category by declaring that for each element g ∈ G
gives rise to exactly one arrow x → y where y = g · x for each x ∈ X, composition being
defined in the obvious way. Then X is a groupoid. The corresponding reduced category
has X/G (the set of orbits) as set of objects, the group of automorphisms of an orbit being
the stabilizer of any of its elements.
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6. Points, representable functors and the Yoneda embedding.

If C is a category, and A an object of C, then for any object T of C, we call T -point of A
a morphism T → A, that is, an element of Hom(T,A). For this reason, we shall also write
A(T ) instead of Hom(T,A). If T is the terminal object of C (provided it exists), then we
speak of a global point. This is in accordance with the fact that a global point of a set A
is just an element of it.

Now we can view y(A):T 7→ A(T ) as a contravariant functor from C to the
category Set of sets (its action of morphisms is the following: if f :T ′ → T is a morphism

in C, then A(f): Hom(T,A) → Hom(T ′, A) takes g to gf). We now let Ĉ = SetC
op

be
the category of contravariant functors from C to Set, also called presheafs (of sets) on C.
Of course, morphisms of presheafs are just natural transformations. Then we make y into
a (covariant) functor y: C Ĉ by letting y(f) = f∗: y(A)→ y(B) be defined on every T
as g 7→ fg for g ∈ y(A)(T ) = Hom(T,A). This functor y is called the Yoneda embedding,
and the second word in the name is justified by the following extremely important fact: y
is full and faithful . We now prove this assertion. Suppose that f :A → B. Then we can
recover f from y(f) by noting that f is the image by y(f)(A): Hom(A,A) → Hom(A,B)
of 1A ∈ Hom(A,A). In other words, f = y(f)(A)(1A). This is obvious from the definitions,
and this shows that y is faithful. To show that y is full, we take α: y(A) → y(B), and
we must show that α is of the form y(f) for some f :A → B. Now we have an obvious
candidate for f , namely α(A)(1A). To check that α is indeed equal to f∗ = y(f), we use
the naturality of α, which implies that for any g:T → A the following square commutes:

1A ∈ Hom(A,A)
y(A)(g)−→ Hom(T,A) 3 g

α(A)
y yα(T )

f ∈ Hom(A,B)
y(B)(g)−→ Hom(T,B) 3 fg

which implies that fg = α(T )(g). But that is also f∗(T )(g), so that α = f∗ and y is full.
The Yoneda lemma (namely the fullness and faithfulness assertion for y) implies that

the category C is equivalent to a full subcategory of Ĉ, the category of presheafs which
are isomorphic to a presheaf of the form y(A) for some A ∈ ob C. Or in other words,
contravariant functors from C to Set which are isomorphic to a functor Hom(—, A) for
some A. Such functors have been called representable by Grothendieck, and they are
sometimes very useful for constructing objects of C; they are also the fundamental tool in
algebraic geometry for constructing “classifying spaces”. The category Ĉ can be viewed
as some kind of very broad completion of C. For example, products exist in C̄, and the
product A×B of two objects in C exists iff the presheaf y(A)× y(B) is representable, in
which case it is (isomorphic to) y(A×B). (Note that this does not work with coproducts:

although coproducts exist in Ĉ, they do not necessarily coincide with coproducts in C.)

Now let us prove this assertion. First of all, to see that products exist in Ĉ and are
computed termwise, let A and B be two presheafs on C, and write C for the presheaf
defined by C(T ) = A(T ) × B(T ) and if f :T ′ → T then C(f) is the map C(T ) → C(T ′)
whose components are the maps A(f):A(T )→ A(T ′) and B(f):B(T )→ B(T ′). Then C is
obviously a presheaf, and also obviously satisfies the universal property of a product. So
products exist in Ĉ (we just did it for products of two objects for simplicity, but there is
no difficulty in generalizing), and are computed termwise Now if A and B are two objects
of C, then to say that they admit a product C means that there exist arrows p1:C → A
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and p2:C → B such that for any object T we have Hom(T,C) ∼= Hom(T,A)×Hom(T,B)
by means of u 7→ (p1u, p2u). But letting A = y(A), B = y(B) and C = y(C), and using
the Yoneda lemma, that is again the same as saying that there exist arrows p1: C → A
and p2: C → B such that for any object T we have C(T ) ∼= A(T ) × B(T ) by means of
u 7→ (p1(T )(u), p2(T )(u)). And that, as we have just seen, means exactly that C is a
product of A and B.

A note on the terminology: those who know what a presheaf on a topological space is
may wonder what that has to do with what we just defined. Well, let X be a topological
space, and consider the category Open(X) whose objects are open sets of X and whose
morphisms are just the canonical immersions (this is the same as considering the topology
of X as a partially ordered set and making it into a category in the usual way). Then a
presheaf of sets on X in the usual terminology is just what we called a presheaf of sets
on Open(X). Of course, this can be read backwards as a definition of a presheaf on a
topological space. Later on, we will define sheaves in all generality: to do this, we will
need to know when an object of a category is “covered” (by arrows of that category), and
this will lead to the definition of a Grothendieck topology on a category.

Representable functors can go the other way also: a covariant functor F: C  Set is
said to be representable iff there exists an object A ∈ ob C such that F ∼= Hom(A,—), and
we have a dual Yoneda embedding which is none other than the Yoneda embedding for Cop.
However, for some obscure reason, representability of covariant functors is (slightly) less
interesting than that of contravariant functors.

We now say a few words on classification problems. Let C be a category with
pullbacks. We assume that Φ is a class of arrows of C that is preserved by base change,
i.e. if p:X → S belongs to Φ and f :S′ → S is a (base change) arrow, then the arrow
pS′ :XS′ → S′ obtained by pulling back p along f belongs to Φ. Then we can consider
the functor F, contravariant from C to Set, that to an object S of C associates the set of
isomorphism classes of arrows X → S belonging to Φ (two arrows X → S and X ′ → S
being considered isomorphic iff there exists an isomorphism X ∼= X ′ which takes one arrow
to the other) and to every morphism f :S′ → S the change of base map taking X → S to
XS′ → S′ as described above (obviously this commutes with isomorphism). We say that
an object M (a “modulus space”) of C classifies Φ iff the functor F is represented by M ,
that is iff F ∼= y(M) = Hom(—,M).

The simplest example of a classification is probably the subobject classifier in the
category Set: let Φ be the category of monomorphisms (i.e. injective maps) in the
category Set. Then the functor F associates to every set S its power set P(S) and to
every map S′ → S the inverse image map P(S)→ P(S′). So we are looking for an object
Ω of Set such that the functors S 7→ Hom(S,Ω) and S 7→ P(S) are naturally isomorphic.
This object is well known and is the set {0, 1}. This serves perhaps to motivate the
following intuitive statement: classifying maps means classifying their fibers (and of course
the only possible fibers of a monomorphism in Set are the empty set and the singleton);
the modulus space is the space of possible fibers; an arrow f :X → S in Φ corresponds to
the arrow S → M which takes each “point” of S to its fiber in M . This is only meant
intuitively but it turns out to be a very good approximation.
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7. Adjoint functors.

The notion of adjoint functors is an extremely important one: in a sense, it is the universal
universal construction, as it is a universal construction which permits to describe every
other universal construction.

So here is the definition: if C and D are categories and F: C D and G: D C are
(covariant) functors, we say that F is left adjoint to G (or that G is right adjoint to F) and
we write F a G iff the functors Hom(F—,—) and Hom(—,G—) are naturally isomorphic.
In other words, this means that for every objects A of C and B of D we are given a
bijection θA,B between Hom(FA,B) and Hom(A,GB), which is natural in the sense that
if f :A′ → A and g:B → B′ are arrows in C and D respectively, then the square

Hom(FA,B)
θA,B−→ Hom(A,GB)

g—(Ff)
y y(Gg)—f

Hom(FA′, B′)
θA′,B′−→ Hom(A′,GB′)

is commutative.
If F a G, then we call ηA the image of 1FA by the bijection θA,FA: Hom(FA,FA) →

Hom(A,GFA). This gives a map ηA:A → GFA. Naturality of η can be proved in
several ways, here is one (possibly not completely rigorous): as A varies, selecting 1A
from Hom(A,A) is natural, and therefore so is selecting 1FA from Hom(FA,FA), and we
apply the natural map θA,FA to this, so the resulting map can only be natural. We leave it
to the reader to formulate this rigorously; anyway, another proof follows from the identity
we are about to formulate.

If h ∈ Hom(FA,B) then the (right) naturality of θ gives the following commutative
diagram:

1FA ∈ Hom(FA,FA)
θA,FA−→ Hom(A,GFA) 3 ηA

h—
y y(Gh)—

h ∈ Hom(FA,B)
θA,B−→ Hom(A,GB) 3 (Gh)ηA

from which one deduces the very important identity

θA,B(h) = (Gh)ηA

Similarily, if we let εA:FGA → A be the inverse image of 1GA by θGA,A, we get a
natural map which satisfies the identity

θ−1
A,B(h) = εB(Fh)

Moreover, applying this last identity to ηA, we see that 1FA = εFA(FηA). In other words,
we have found natural transformations η: 1C → GF and ε:FG → 1D, respectively called

the unit and the counit of the adjunction, such that the composite F
Fη→ FGF

εF→ F is the

identity 1F, and similarily for the composite G
ηG→ GFG

Gε→ G.
Now conversely assume that F: C  D and G: D  C are functors and η: 1C → GF

and ε:FG → 1D are natural transformations such that the composites F
Fη→ FGF

εF→ F

and G
ηG→ GFG

Gε→ G are the identity, then define θA,B : Hom(FA,B) → Hom(A,GB) by
θA,B(h) = (Gh)ηA. This is trivially natural on the right and it is natural on the left because
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of the naturality of η (we invite the reader to write down the corresponding diagrams).
Moreover, it is a bijection, because h 7→ εB(Fh) is its inverse (we omit a simple calculation
here). Thus, θ is a natural isomorphism between Hom(F—,—) and Hom(—,G—) and so
F a G, η and ε being the unit and counit of the adjunction.

Now suppose that F a G, where F: C  D and G: D  C. Let C0 be the full
subcategory of C whose objects are those A ∈ ob C such that ηA is an isomorphism, and
D0 be the full subcategory of D whose objects are those B ∈ ob D such that εB is an
isomorphism. Then F and G restrict to functors C0  D0 and D0  C0 respectively
(indeed, if ηA is an isomorphism, then εFA = Fη−1

A is also, and if εB is an isomorphism
then ηGB is also), which we call F0 and G0 respectively, and thus η: 1C0

→ G0F0 and
εF0G0 → 1D0

are natural isomorphisms, thus showing that F0 and G0 are category
equivalences. In this way, any adjointness of functors determines equivalent categories;
this principle is called the “equivalence of opposites”. Conversely, any pair of quasi-inverse
functors are left and right adjoint to each other. However, if a functor is both left and
right adjoint to another, it does not follow that they are quasi-inverse to one another.

Clearly, if F is left adjoint to G, then FG and FGFG are isomorphic. :-(Both

composite arrows FG
FηG→ FGFG

εFG→ FG and FG
FηG→ FGFG

FGε→ FG are the identity,
whence it follows that FηG is an isomorphism with inverse FGε = εFG (this last identity is
a consequence of what precedes, not an explanation).:-) Similarily, of course, the functors
GF and GFGF are isomorphic.

Note that if a functor F has a right adjoint G, then it is unique up to isomorphism.
:-(Indeed, if G and G′ are two, then 1GA ∈ Hom(GA,GA) determines an element of
Hom(FGA,A) (which is none other than εA, and then in turn an element of Hom(GA,G′A)
(which is none other than (G′εA)η′GA with the obvious notations), which is easily checked
to be an isomorphism, and which is clearly natural in A.:-) The corresponding statement
for left adjoints also holds, of course. Thus we commit the usual abuse of notation and
speak of the right (or left) adjoint.

For another important statement, note that if F: C  D, G: D  C, F′: D  E
and G′: E  D, that F a G and F′ a G′ then F′F a GG′, and indeed the unit of the
adjunction η′′: 1C → GG′F′F is the composite of the unit η: 1C → GF by the unit image
GηF:GF→ GG′F′F, and similarily for the counit. The proof goes without surprise.

Here is another way of defining adjoint functors which occasionally turns out to be
useful: if F a G with F: C  D and G: D  C, then we see that for every object A
of C the object FA and the arrow ηA:A→ GFA have the universal property that for each
object B of D and each arrow f :A → GB there is a unique arrow g:FA → B such that
(Gg)ηA = f ; we say that ηA is universal among arrows from A to an object of the form
GB. Conversely, if we have a functor G: D  C and for each object A of C an object
FA and an arrow ηA:A → GFA that is universal among arrows from A to an object of
the form GB, then we can make F into a functor by letting Ff = g for f :A → A′, where
g:FA→ FA′ is the arrow corresponding to the composite ηA′f :A→ GFA′ by the universal
property; it is then easily checked that F is the left adjoint functor to G.

Examples of adjoint functors abound in mathematics. To start with the most classical
example, let R be a ring, and G:RMod Set be the forgetful functor (which takes an R-
module to its underlying set), and let F: Set RMod be the free R-module construction:
it takes a set B to R(B) (the left R-module of functions from B to R with finite support)
and a map B → B′ to the unique morphism R(B) → R(B′) which restricts to the given
map B → B′ (with B and B′ identified with the canonical bases of R(B) and R(B′)). Then
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I claim that F is left adjoint to G. The unit ηB takes the set B to the subset of R(B) which
we have identified with B, and the counit εM shows M as a quotient of the free module
with basis every element of M . It is a trivial exercice to verify that the adjunction identities
are indeed satisfied. This is a general phenomenon: the left adjoint to a forgetful functor,
when it exists, is a “free object” construction functor. Similarily, the left adjoint to the
forgetful functor Group  Set is the free group functor Set  Group, the left adjoint
to the forgetful functor Ring  Set is the polynomial ring functor (over Z), the left
adjoint to the addition-forgetful functor Ring  Semigroup (where Semigroup is the
category of semigroups, that is, associative magmas with a unit element, morphisms being
magma homomorphisms which preserve the unit element) is the semigroup ring functor
Semigroup Ring. The multiplication forgetful functor Ring AbGroup also has a
left adjoint, but I do not believe it has a classical name; it is easily described, however: it
takes an abelian group A to the ring of polynomials on elements of A quotiented out by
all the (additive) relations that elements of A satisfy. If G is a group, the forgetful functor
GSet Set has a left adjoint, namely the functor taking a set X to the free (also called
“induced”) G-set with basis X, that is the set G×X with G acting on the first coordinate
(G then acts freely, hence the name).

Not only forgetful functors, but also inclusion functors tend to have left adjoints.
When the inclusion functor G: C  D of a subcategory C of a category D has a left
adjoint, we say that C is a reflective subcategory of D, that the left adjoint in question is the
reflector, and that the unit of the adjunction is the reflection. This terminology is mainly
in use for full subcategories. For example, the inclusion functor AbGroup Group has
a left adjoint, namely the “abelianization” functor Group  AbGroup which takes a
group G to G/G′ (where G′ is the derived group of G, viz. the subgroup generated by the
commutators), and a morphism f :G→ H to the induced morphism G/G′ → H/H ′, which
is meaningful because f(G′) ⊆ H ′. The unit of the adjunction is the canonical morphism
ηG:G → G/G′, and the counit is an isomorphism. Thus, AbGroup is a full reflective
subcategory of Group. The inclusion functor Ring  PsRing also has a left adjoint,
namely the functor PsRing Ring which takes a pseudo-ring R to the ring Z⊕R with
the obvious multiplication (so that the unit of Z becomes the unit of Z⊕R). The unit ηR
identifies the pseudo-ring R with the obvious sub-pseudo-ring of the ring Z ⊕ R, and the
counit εR identifies in Z⊕R the unit of Z and the unit of the ring R.

Examples from topology can also be given: for example, let ComTop be the category
of compact (Hausdorff) topological spaces. Then the inclusion functor ComTop  Top
has a left adjoint, which is none other than the Stone-Čech compactification functor. Thus,
ComTop is a full reflective subcategory of Top. Another example: for n = 0, 1, 2, 3, let
TnTop be the category of Tn topological spaces (a T0 space is called a “Kolmogoroff”
space by Bourbaki, a T1 space an “accessible” space, a T2 space is a Hausdorff space and
a T3 space is a regular space — we take a definition for regularity which implies T1 and
hence T2). Then each of the inclusion functors TnTop  Tn−1Top (for n = 1, 2, 3) has
a left adjoint. This is (essentially) proved in Bourbaki, Topologie Générale, chapter I,
exercice 27 to section 8.

Consider the diagonal functor Set Set2, which takes a set A to (A,A) and a map f
to (f, f). It has a left adjoint and a right adjoint. The right adjoint is the product functor
Set2  Set, which takes (A,B) to A × B, and the left adjoint is the coproduct (disjoint
union) functor Set2  Set, which takes (A,B) to A q B. (This applies to any category
with finite products and coproducts, of course, not just to Set.) More interestingly, for
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any set A, the functor A × —: Set  Set itself has a right adjoint, namely —A (the
reader will have no difficulty in figuring out what that means). This is also a contravariant
functor in A, actually (the reader may wish to formulate a definition of adjointness for one
variable of functors of several variables; but at this stage, it is perhaps better to do things
by hand).

If the reader will recall our example from logical systems, if A is a proposition, the
functor which to B associates A ∧ B has a right adjoint, which is the functor which to C
associates A =⇒ C. The adjointness states that proofs of C starting from A ∧B are “the
same thing” as proofs of A =⇒ C starting from B, and that what is classically called the
deduction theorem.

If P and P ′ are partially ordered sets which are made into categories P and P′, so
that a functor f : P  P′ is the same as an order preserving map f :P → P ′, then two
order preserving maps f :P → P ′ and g:P ′ → P are adjoint f a g as functors iff f(x) ≤ y
is equivalent to x ≤ g(y). This is classically expressed by saying that f, g is a Galois
correspondance.

8. Limits and colimits.

Let C be a category, and I a (small) category, which we call the “indexing” category.
We consider the category CI, and call it the category of projective systems (or
inductive systems according to what we want to do with it). In other words, a projective
system (or inductive system) indexed by I and with values in C is nothing else than a
functor I  C. The images of the objects of I by the functor are sometimes called the
“members” of the projective system, and the images of the arrows of I its “arrows”.

We note that there is an evident functor ∆: C  CI, the so-called diagonal functor
which takes any object A of C to the projective system whose members are all equal
to A and whose arrows are all 1A. Suppose for a moment that I is not empty. Then
the functor ∆ is evidently faithful (it is not full in general — it is so if the category I is
(weakly) connected, though) and injective, and so it identifies C with a (non necessarily
full) subcategory of CI. In particular, if P ∈ ob CI is a projective system, then we can
consider the “slice” category C ↓ P, whose objects are morphisms ∆(A) → P in CI and
whose arrows between ∆(A) → P and ∆(B) → P are arros A → B in C such that
the corresponding arrow ∆(A) → ∆(B) makes the obvious triangle commute. For the
construction to work even if I is empty, we shall say that C ↓ P has for objects the pairs
(A,α) where A is an object of C and α a morphism ∆(A)→ P in CI, and the morphisms
between (A,α) and (B, β) are the morphisms f :A → B of C such that α = β∆(f). The
category C ↓ P is also called the category of (projective) cones on P. The object A in a
cone ∆(A)→ P is called the apex of the cone. If the category C ↓ P has a universal (that
is, terminal) object, then it is called the projective limit of the projective system P (or its
apex is).

The previous definition was perhaps a little hard to swallow. Here it is in a pre-
digested form. If P: I  C is a functor (i.e. projective system), then the projective limit
of P is an object L of C together with a natural transformation λ: ∆(L)→ P such that for
any natural transformation (i.e. cone) α: ∆(A)→ P there exists a unique arrow f :A→ L
satisfying α = λ∆(f).

Now let us digest this even further: a projective system consists of an object Xi = P(i)
for every object i of I, and an arrow pi→j :Xi → Xj for every arrow i → j of I which
compose like they should (of course the notation is abusive because there may be several
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arrows i → j in I but we assume the reader can keep track of them). A cone on this
projective system consists of an object A and for each i an arrow αi:A→ Xi such that for
each arrow i→ j of I we have αj = pi→jαi. The projective limit (if it exists) is an object
L with arrows λi:L→ Xi forming a cone and such that for each cone as above there exists
a unique f :A→ L such that αi = λif for each i.

Now this is beginning to seem clearer. In particular, it should be clear that if I is
just a set I (i.e. a discrete category) then a projective system is just an I-indexed family
of objects and the limit is the same thing as the product of the family (exists in the same
cases and has the same value in case of existence). Similarily, the limit of a projective
system A ⇒ B (which means two arrows f :A → B and g:A → B, identified with the
obvious functor from • ⇒ • (the category with two objects and exactly two arrows from
one to the other) to C) is the equalizer of the two arrows. And the limit of the projective

system X1
s1→ Y

s2← X2 is the fibered product X1 ×Y X2.
If I is empty, then there is only one projective system indexed by I, and its limit is

the terminal object of C (if either exists). If I is weakly connected but not empty, then
projective limit of a constant projective system (that is, the image by ∆ of an object A)
is the value of the constant, A. Note however that even if all the members of a projective
system (over a non empty weakly connected indexing category) are equal to A it does not
follow that the limit is A: what we said above applies if the arrows are all identities.

Some particular cases of projective limits are particularily important. We have
mentioned the case where I is just a set, in which case projective limits over I are just
products. The case where I is a category with two objects, A and Ω, the only arrows
being the identities and some arrows from A to Ω, is the general case of equalizers. When
I is a group G, a projective system on I is also called a G-object (it is the same thing
as an object A of C and a morphism from G to the group of automorphisms of A), and
the projective limit is called the object of fixed points, sometimes written AG. When I
is a preordered set, we speak of preordered projective limits. Notice, by the way, that
replacing I by an equivalent category “does not change anything” to the projective limits
(we leave the formulation of a precise statement and its proof to the reader; note that it is
sufficient to prove the result when replacing I by Ī, the reduced category of I). There are
also some more interesting results about replacing the category I by a coinitial subcategory
with various conditions. We note however that if I has an initial object, then limits of
projective systems indexed by I with values in any category always exist and are the value
of the projective system on the initial object.

Another thing to note is that any projective limit can be constructed from products
and equalizers. Indeed, if P: I  C is a projective system indexed by a category I and
with values in a category C, let L0 be the product of the Xi = P(i) for all i ∈ ob I,
and pi:L0 → Xi be the projection maps. Now for every arrow i → j in I, we have a
corresponding arrow pi→j = P(i → j):Xi → Xj in C, and the arrows pk for k 6= j
and pi→jpi determine an arrow zi→j :L0 → L0 (which corresponds intuitively to replacing
the i-th component in L0 by its image by pi→j). Now the equalizer of all those arrows
is the sought for limit L. This is really quite obvious. The interesting corollary is that
1) if a category admits arbitrary (small) products and arbitrary (small) equalizers then it
admits arbitrary (small) limits and that 2) if a category admits a terminal object, binary
products and binary equalizers, then it admits finite limits

∗
. A category which admits

∗
Very smart people may notice that if a category admits a terminal object and finite
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finite products is called cartesian.
If C, D and I are three categories (with I small and perhaps D also), then computing

limits in CD is easy when one know how to compute them in C. Namely: if P: I  CD

is a projective system, and L ∈ ob CD its limit, then for every object D of D, L(D) is the
projective limit of the system PD: I C obtained by composing P by the evaluation-at-D
functor CD  C. And conversely, if every PD has a projective limit L(D) there is an
obvious way of making L into a functor (namely, by saying that if f :D → D′ then L(f)
is the arrow L(D) → L(D′) obtained by applying the universal property of L(D′) to the
arrow L(D) → PD′ obtained by composing the canonical L(D) → PD with the arrow
PD → PD′ obtained by functoriality of P) so that L is the limit of P. One expresses all
this by saying that limits in functor categories are computed pointwise.

There are many connections between universal constructions and adjoint functors.
Here is one: if C and I are such that every projective system P: I  C has a limit then
these limits constitute a functor L: CI  C, and we have ∆ a L. Conversely, if ∆ admits
a right adjoint L, then every projective system P has a limit and this limit is L(P). This
follows almost immediately from the definitions, and we leave the details to the reader.

Suppose G: D  C is a functor. Then it induces a functor GI: DI  CI in the
obvious manner: thus we have GI∆D = ∆CG. Now suppose G has a left adjoint F; then
it is relatively obvious that FI a GI. If the limit of every projective system indexed by the
category I and with values in C or D exists then we call LC and LD the corresponding
functors. Thus we have ∆C a LC, and ∆D a LD, and thus ∆DF a GLD and also
FI∆C a LCG

I. But since ∆DF = FI∆C, we conclude that GLD
∼= LCG

I. In other words,
any functor which has a left adjoint commutes with the formation of projective limits; or,
for short, right adjoints preserve limits. Naturally, this still works even if not every limit is
defined (there are several ways to prove this, one of them is to use the Yoneda embedding,
see below).

Another way to define limits is by use of representable functors. First of all, notice
that everyone know what a projective limit in the category Set is: if P ∈ ob SetI is
a projective system, then its projective limit is the subset of

∏
i∈ob I P(i) consisting of

families for which for every arrow i → j in I the j-th component is the image of the i-th
component by the map P(i → j). Second, notice that it follows that we can calculate

limits in every presheaf category Ĉ = SetC
op

, pointwise as we have seen (actually, it does

not really matter that we know this; just define the limit in Ĉ to be the pointwise limit
in what follows and whether it is the actual categorical limit is of little importance). And
then one can define the projective limit L of any projective system P: I  C by letting
y(L) be the projective limit of yP, where y: C  Ĉ is the Yoneda embedding. In other
words, “the projective limit of the Pi is the object such that Hom(—, L) is the limit of
the Hom(—,Pi)”. This is essentially a restatement of the definition: an arrow from T
to L is the same as a system of arrows from T to the Pi which satisfies the compatibility
conditions, viz. a cone with vertex T .

The definition of the colimit, or inductive limit, of an inductive system, is dual to that
of the projective limit: if I: I  C is an inductive system, then its inductive limit is the
same thing as the projective limit of the corresponding functor Iop  Cop. In other words,
this time, we are looking for an initial object in the category I ↑ C, or for a left adjoint

equalizers, then it admits finite limits; indeed, it admits binary products as the equalizer
of no arrow.

30



to ∆. Colimits in functor categories are also computed pointwise. One word of warning,
however: inductive limits in any category cannot be defined using inductive limits of sets;
inductive limits in C do not coincide with inductive limits in Ĉ. Rather, inductive limits
in C are defined as projective limits in Cop, or, what amounts to the same, SetC.

An important particular case of inductive limits is that of (preordered) filtered
colimits: that means that I is not only a preordered set but one where for each i, j there
exists a k which satisfies i � k and j � k.

It is probably not useful to give many examples of limits and colimits. Probably
everyone knows that Zp is the projective limit of the Z/pkZ, that is, of the functor from
the category Nop (the ordered set of the natural numbers made into a category in the
opposite of the usual way) to the category ComRing which takes k to Z/pkZ and the
arrow k → ` when k ≥ ` to the canonical map Z/pkZ→ Z/p`Z. Similarily, if G is a group
then we define its profinite completion by letting I be the partially ordered set of normal
subgroups of finite index of G made into a category in the usual way, and taking the limit
of the projective system I  Group which takes a subgroup H ∈ ob I to the quotient
G/H and the arrow H ≤ H ′ to the canonical map G/H → G/H ′. (One can also define the
profinite completion by taking the left adjoint to the functor of the category of profinite,
i.e. compact totally discontinuous groups, to the category of groups.) The inductive limit
is used, for example, to define the stalk of a sheaf at a point.

We also point out that since many inclusion or forgetful functors have left adjoints
(free object constructions), they preserve limits. This “explains” that the underlying set
to the product of two groups is the product of the underlying sets, that the product of two
abelian groups as abelian groups is their product as groups, and so on. Forgetful functors
tend not to commute with inductive limits on the other hand (the free product of two
groups is a rather violent counter-example); however, many forgetful functors commute
with filtered inductive limits; it is certainly possible to issue a general statement to that
effect but we shall not do so.

9. More about kinds of arrows and families of arrows.

We recall that we defined a morphism f :A→ B in a category C to be an monomorphism
iff for every g, g′:T → A such that fg = fg′ we have g = g′. In other words, that means
that the morphism Hom(T, f): Hom(T,A)→ Hom(T,B) (composition by f on the left) is
a monomorphism for every object T of C. That is also the same as saying that the natural
transformation y(f) = Hom(—, f): Hom(—, A) → Hom(—, B) is a monomorphism (as
a morphism of functors). (There are several ways to see this: either “by hand” or by
using what is already known about the Yoneda embedding and the characterization of
monomorphisms using kernel pairs, which are limits and therefore are preserved by the
Yoneda embedding.)

We now assume that the category C in which we work has (binary) amalgamated
sums. We say that a morphism f :A→ B is an effective monomorphism iff the diagram

A→ B ⇒ B qA B

is an equalizer, meaning that f is the equalizer of the two canonical arrows from B
to B qA B (it is obvious from the definition that it equalizes them — the important
statement is that it is the universal such arrow). In particular, f is a monomorphism.
Now if f is the equalizer of any pair of arrows, say g1, g2:B → Z, then f is actually the
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equalizer of the canonical j1, j2:B → B qA B. :-(Indeed, there exists g:B qA B → Z
such that g1 = gj1 and g2 = gj2. Now if h:T → B coequalizes j1 and j2, that is
satisfies j1h = j2h, then it obviously coequalizes g1 = gj1 and g2 = gj2, and so it factors
through f , QED.:-) In other words, effective monomorphisms are just equalizers of pairs
of arrows. Clearly, to test whether f :A→ B is an effective monomorphism, it is necessary
and sufficient that the diagram y(A) → y(B) ⇒ y(B qA B) be an equalizer (since the
Yoneda embedding preserves limits), and that is again the same as testing that the diagram
Hom(T,A) → Hom(T,B) ⇒ Hom(T,B qA B) be an equalizer for every T . Note however
that this is not the same in general as asking for y(f): y(A) → y(B) to be an effective
monomorphism; indeed, y(B qA B) is not necessarily the same as y(B) qy(A) y(B); and
in fact, y(f) is an effective monomorphism iff it is a monomorphism since in Set every
monomorphism is effective.

Now we dualize, which will give us the occasion to recapitulate before we go further
(the point is that epimorphisms and effective epimorphisms are what we will need later
but they are a little more annoying to define because of the dual Yoneda embedding which
dualizes everything; besides, we will talk about base change which is more pleasant than
cobase change — but of course there is no break in the symmetry). So here it goes:

We assume C is a category which admits fibered products. A morphism f :U → V
in a category C is called an epimorphism iff the natural map Hom(f,—): Hom(V,—) →
Hom(U,—) is mono, or, what amounts to the same, is injective on every object T . The
morphism f :U → V is called an effective epimorphism iff it is the coequalizer of a pair of
arrows, or, what amounts to the same, the diagram

U ×V U ⇒ U → V

is a coequalizer, or, what amounts to the same, the diagram Hom(V,—)→ Hom(U,—)⇒
Hom(U×V U,—) is a coequalizer, or, what amounts to the same, the diagram Hom(V, T )→
Hom(U, T )⇒ Hom(U×V U, T ) is a coequalizer (also sometimes called an “exact sequence”)
of sets for every T . An effective epimorphism is an epimorphism, of course, but the converse
does not hold (for a counterexample, take the epimorphism Z→ Q in Ring).

The definition of an effective epimorphism suggests that we look (for an arbitrary
morphism f :U → V in C) at the subset Hom(f)(U, T ) of Hom(U, T ) consisting of those
h:U → T such that hp1 = hp2 where p1, p2:U ×V U → U are the projections. In other
words, Hom(f)(U, T ) is the kernel (equalizer) of the double arrow Hom(U, T )⇒ Hom(U ×
V U, T ). Of course, the image of Hom(V, T )→ Hom(U, T ) is included in Hom(f)(U, T ), and
saying that f is an effective epimorphism means that the map Hom(V, T )→ Hom(f)(U, T )
is bijective for every T . Saying that it is injective means exactly that f is an epimorphism.
When it is surjective, we say that f is conjunctive (the dual notion is “disjunctive” — I
do not believe these notions have any interest whatsoever). Now it is interesting to have
another description of Hom(f)(U, T ) (in particular one which remains valid in a category
that does not necessarily have pullbacks); here it is: Hom(f)(U, T ) is the set of arrows
h:U → T such that if k1, k2:Z → U satisfy fk1 = fk2 then they also satisfy hk1 = hk2.
:-(If h satisfies this last condition, then, since fp1 = fp2, it also satisfies hp1 = hp2 and
thus is in Hom(f)(U, T ). Conversely, if h ∈ Hom(f)(U, T ) and fk1 = fk2, then there is
a k:Z → U ×V U such that k1 = p1k and k2 = p2k; now since hp1 = hp2, we also have
hk1 = hp1k = hp2k = hk2, QED.:-) So to reformulate the definition: an arrow f :U → V
in an arbitrary category C is an epimorphism (resp. a conjunctive arrow, resp. an effective
epimorphism) iff for every morphism h:U → T which coequalizes the same arrows as f
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there is at most (resp. at least, resp. exactly one) arrow g:V → T with h = gf . And of
course, Hom(f)(U, T ) is the set of h:U → T which coequalize the same arrows as f . I
do not believe that (in a category that does not necessarily have pullbacks) an effective
epimorphism is the same as a coequalizer; however, I am certainly not going to look for
a counterexample. Anyhow, even if we are not interested in categories without pullbacks,
this reformulation of the definition is interesting because with it we can prove that a
sectionable morphism is an effective epimorphism. :-(Suppose f :U → V has a section,
s:V → U , so that fs = 1V . We already know that f is an epimorphism (so we only have
to show that it is conjunctive). Now let h ∈ Hom(f)(U, T ). We have an obvious candidate
for g such that h = gf , namely hs. Now what we have to show is that h = hsf . But since
h ∈ Hom(f)(U, T ), do do that we only have to show that f = fsf , and that is trivial.:-)
Note also that if f is mono then Hom(f)(U, T ) = Hom(U, T ), and so a monomorphism is
an effective epimorphism iff it is an isomorphism.

We have seen that monomorphisms remain monomorphisms after an arbitrary base
change. The same does not hold for epimorphisms (they are stable under cobase change,
i.e. pushout, but not pullback in general). (For a counterexample, it is probably easier to
refute the dual statement, and to do that, use the category of rings, take the monomorphism
Z→ Q and perform the cobase change Z→ Z/2Z.) We say that a morphism f :U → V is a
universal epimorphism iff for every arrow h:V ′ → V the arrow fV ′ :UV ′ → V ′ obtained by
pulling f back along h is an epimorphism (and in particular, f itself is an epimorphism).
And then of course we have the notion of a universal effective epimorphism: a morphism
f :U → V is said to be a universal effective epimorphism iff for every arrow h:V ′ → V the
arrow fV ′ :UV ′ → V ′ obtained by pulling f back along h is an effective epimorphism. We
will give corresponding definitions in arbitrary categories later on.

Now suppose (fi:Ui → V )i∈I is a family of arrows with a common target. We say
that the family is epimorphic iff the product arrow

∐
i∈I Ui → V is an epimorphism.

Of course, to say that, we do not really need the coproduct to exist: rather, we shall
say that the family (fi) is epimorphic iff for every object T of C the arrow Hom(V, T )→∏
i∈I Hom(Ui, T ) (which sends an arrow V → T to its composites with every fi) is injective.

To define what it means for a family to be effective(ly) epimorphic, it would be tempting
to ask for the arrow

∐
i∈I Ui → V to be an effective epimorphism, but unfortunately that

is not quite what we need. Rather, we define Hom(fi)(Ui, T ) to be the set of all families
(hi:Ui → T ) such that if k1:Z → Ui1 and k2:Z → Ui2 are such that fi1k1 = fi2k2 then also
hi1k1 = hi2k2. Now clearly the composition-by-fi map Hom(V, T )→

∏
i∈I Hom(Ui, T ) has

image in Hom(fi)(Ui, T ). So we say that the family (fi) is epimorphic (resp. conjunctive,
resp. effective(ly) epimorphic) iff the map Hom(V, T ) → Hom(fi)(Ui, T ) that it induces is
injective (resp. surjective, resp. bijective) for every object T . Now if the category C has
fibered products, this can be restated by saying that for every object T the sequence

Hom(V, T )→
∏
i∈I

Hom(Ui, T )⇒
∏

(i,j)∈I2
Hom(Ui ×V Uj , T )

is exact (that is, is an equalizer of sets). :-(We write p1ij :Ui ×V Uj → Ui and
p2ij :Ui ×V Uj → Uj for the two projections. We have to show that a family (hi:Ui → T )
satisfies hip1ij = hjp2ij for every i, j iff for every k1:Z → Ui1 and k2:Z → Ui2 such that
fi1k1 = fi2k2 we have also hi1k1 = hi2k2. Now if (hi) satisfies the latter condition, then
letting k1 = p1ij and k2 = p2ij we see that hip1ij = hjp2ij . Conversely, if this is true for
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every i, j, and if k1:Z → Ui1 and k2:Z → Ui2 are such that fi1k1 = fi2k2, then k1 and k2

factor through Ui1×V Ui2 , and so we have the desired result (see the case of a single arrow,
above, for details).:-)

We now make two easy comments: first, we can just as well talk of epimorphic
(resp. etc.) sets of arrows as families of arrows; that is trivial. Second, a set S of arrows
with codomain V is epimorphic (resp. etc.) iff so is the set S̃ of arrows of the form fr
with f :U → V in S and r:U ′ → U an arbitrary arrow. In other words, we can always
assume that S is closed under composition by the right (we say that S is a sieve — clearly
the set S̃ above is just the sieve generated by S). This is because in Hom(S)(. . . , T ), the
component corresponding to fr (if fr is part of S) is determined by that corresponding
to f (indeed, putting k1 = 1 and k2 = r, since ffr = fr = ffr, we must also have
hfr = hfr), so adding or removing fr to S will not change anything.

To recapitulate, if S is a sieve of arrows, that is, a set of arrows with a common
codomain V which is closed under composition on the right, we let Hom(S)(. . . , T ) be
the set of families (hf )f∈S of arrows such that hfr = hfr for every arrow r and f ∈ S.
An arrow g:V → T determines such a family by putting hf = gf . Thus for every T we
get a map of sets Hom(V, T ) → Hom(S)(. . . , T ). We say that the sieve S is epimorphic
(resp. conjunctive, resp. effective(ly) epimorphic) iff this map is injective (resp. surjective,
resp. bijective) for every T . Saying that a family of arrows is epimorphic (resp. etc.) is
the same as saying that the sieve it generates is so.

Now we return to the word “universal” and discuss it in greater detail. If S is a sieve
with codomain V (meaning that every arrow in S has codomain V ) and h:V ′ → V is
an arrow, then we define a sieve h∗(S) with codomain V ′ in the following way: an arrow
f :U → V ′ is in h∗(S) iff hf is in S. Now obviously if S is generated by a family (fi:Ui → V )
of arrows and fiber products exist then h∗(S) is generated by the arrows (fiV ′ :UiV ′ → V ′)
obtained by pulling back the fi along h. Thus it is compatible with our previous definitions
to say that S is universally epimorphic (resp. universally conjunctive, resp. universally
effective(ly) epimorphic) iff h∗(S) is epimorphic (resp. conjunctive, resp. effective(ly)
epimorphic) for every arrow h:V ′ → V . Of course, we say that a family of arrows with a
common codomain is universally epimorphic (resp. etc.) iff the sieve they generate is so. In
a category with pullbacks, a family (fi:Ui → V )i∈I is universally effective(ly) epimorphic
iff for every T and V ′ → V the diagram

Hom(V ′, T )→
∏
i∈I

Hom(Ui ×V V ′, T )⇒
∏

(i,j)∈I2
Hom((Ui ×V V ′)×V ′ (Uj ×V V ′), T )

is exact (recall that (Ui ×V V ′)×V ′ (Uj ×V V ′) = (Ui ×V Uj)×V V ′).
We note that if S is an epimorphic sieve, say with codomain W , and R a sieve with

codomain W such that for every h:V → W in S the sieve h∗(R) is epimorphic, then
the sieve R itself is epimorphic. :-(Suppose k1, k2:W → T are such that k1g = k2g
for every g ∈ R. Now fix h ∈ S. If f ∈ h∗(R) then hf ∈ R, and so k1hf = k2hf .
Since this holds for every f in h∗(R) which is epimorphic, we have k1h = k2h. Now
this is true for every h ∈ S, which is epimorphic, so k1 = k2, QED.:-) We also
have the same statement obtained by replacing “epimorphic” everywhere by “effectively
epimorphic”. :-(We already know R is epimorphic, so we only have to show that it
is conjunctive. Suppose (kg)g∈R ∈ Hom(R)(. . . , T ). Fix h ∈ S, say h:V → W . Then
clearly (khf )f∈h∗(R) ∈ Hom(h∗(R))(. . . , T ), and so there exists kh ∈ Hom(V, T ) such
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that khf = khf for all f ∈ h∗(R). Because h∗(R) is epimorphic, and so kh is uniquely
determined, we have khr = khr for all r with codomain V . Thus, (kh)h∈S ∈ HomS(. . . , T ),
and so there exists k ∈ Hom(W,T ) such that kh = kh for every h ∈ R. QED.:-)
Notice in passing that even to show that R is conjunctive, we needed the fact that
the h∗(R) are epimorphic; the statement with “conjunctive” everywhere does not hold.
Now we obviously have the corresponding statements with “universally epimorphic” and
“universally effectively epimorphic”.

We have just proved that universally effectively epimorphic sieves constitute a
topology, and we will soon be saying what a topology is. But before, we give a few
examples of the concepts we have seen.

Let us start with Set. If f :U → V is a map of sets, then U ×V U is the set in which
every fiber of f is “squared”. An map U → T has the same image U ×V U → T iff it is
constant on every fiber. Such a map always comes from a map V → T except when T , and
hence U also, is empty, but not V . And the map V → T in question is unique iff all fibers
are non empty or T has at most one element. Hence, an epimorphism is the same as a
surjective map, a conjunctive map is one whose domain is not empty except if the range is
also, and an effective epimorphism is the same as an epimorphism. A universal (effective)
epimorphism is again the same thing as a surjective map, and so is a universal conjunctive
map (because a fiber of f can be written as a fiber product with a singleton). A family
(fi:Ui → V ) is epimorphic (resp. effectively epimorphic, resp. universally epimorphic,
resp. universally effectively epimorphic) iff V is the union of the fi(Ui).

We now turn to the category Top. We have seen that epimorphisms are surjective
continuous maps. Effective epimorphisms on the other hand are quotients (this follows
from a description of coequalizers for example); not every surjective map is a quotient: for
example, the identity from R with the discrete topology to R with the ordinary topology
is mono and epi but is not iso, so it is not effective epi (nor is it effective mono). This also
characterizes effective epimorphisms in HausTop.

In the category Ring, we have seen that epimorphisms are a little difficult to
grasp. Effective epimorphisms are easier: f :A → B is an effective epimorphism iff it is
surjective (this follows from the description of coequalizers). And it follows that effective
epimorphisms are universally so. We may also look at the dual notions (or, what amounts
to the same, look at the category Ringop, which is equivalent to the category of affine
schemes). A monomorphism f :A→ B of rings is just an injective morphism. An effective
monomorphism f :A → B is a morphism such that shows A as the set of elements x
of B ⊗A B such that x⊗ 1 = 1⊗ x (this is merely restating the definition); so for example
the monomorphism Z → Q is not effective (indeed, we know that it is epi, and it is not
iso). A universal monomorphism f :A→ B is one that shows A as a pure submodule of B;
so the monomorphism Z→ Q is not only not effective but also not universal.

Well, this should rather persuade the reader, if not that the notions in question are
interesting, at least that they are not trivial, and lead to difficult problems when one tries
to characterize them in the classical categories.
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10. Grothendieck topologies and sheaves.

Let C be a category. We recall from the previous section that if V is an object
of C, a sieve on V is a set (class) of arrows with codomain V which is closed under
composition on the right. Any family of arrows with codomain V generate a sieve in
the evident way. We also recall that if S is a sieve on V and h:V ′ → V , then we let
h∗(S) = {f : (ran f = V ′) ∧ (hf ∈ S)}, which is a sieve on V ′, and if pullbacks exist, then
h∗(S) is generated by the pullbacks of an arbitrary generating family of S.

By a Grothendieck topology on C we mean a map which associates to every object V
of C a set J(V ) (class, collection, hyperclass, whatever) of sieves on V such that:
(i) For every V ∈ ob C the maximal sieve {f : ran f = V } is in J(V ).

(ii) (Stability) For any arrow h:V →W in C, and any S ∈ J(W ), we have h∗(S) ∈ J(V ).
(iii) (Transitivity) For every W ∈ ob C, if S ∈ J(W ) and R is a sieve on W such that

h∗(R) ∈ J(V ) for every h:V →W in S then R ∈ J(W ).
If S ∈ J(V ) for an object V ∈ ob C, we say that S covers V . More generally, we

say that a family of arrows of C with a common codomain V cover V iff the sieve they
generate does. So the axiom (i) means that the identity of V covers V , axiom (ii) means
that if a family of arrows cover W then their pullback by an arbitrary arrow h:V → W
covers V (or the best we can do in the absence of pullbacks), and axiom (iii) means that
if W is covered by arrows which are themselves covered by other arrows, then W is covered
by the other arrows in question (this is a bit approximative but it can be made rigorous).

We note for future reference that
(iv) If V ∈ ob C, that S ∈ J(V ) and R is a sieve on V that contains S (one says that S is a

refinement of R, or that it is finer than R) then R ∈ J(V ). :-(Apply the transitivity
axiom and note that h∗(R) is the maximal sieve for every h ∈ R so in particular for
every h ∈ S.:-)

(v) If V ∈ ob C and S, S′ ∈ J(V ) then S∩S′ ∈ J(V ). :-(Apply the transitivity axiom: for
h ∈ S we have h∗(S∩S′) = h∗(S′) and by the stability axiom this sieve is covering.:-)
We say that a sieve S (or a family of arrows that generate it) on W covers an arrow

h:V → W iff h∗(S) covers V , that is, h∗(S) ∈ J(V ). The axioms for a Grothendieck
category can then be reformulated in the following “arrow” form:
(ia) If S is a sieve on V and f ∈ S, then S covers f .
(iia) (Stability) If S covers an arrow f :V →W , then it covers fg for every g:U → V .
(iiia) (Transitivity) If S covers an arrow f :V →W and a sieve R on W covers every arrow

of S then it covers f .
The proofs of (i), (ii) and (iii) from (ia), (iia) and (iiia) respectively are obtained by

considering the identitiy arrow. Conversely, let us prove (ia), (iia) and (iiia) from (i), (ii)
and (iii) respectively. :-(To show (ia), note that f∗(S) contains the identity, so it is the
maximal sieve. To show (iia), note that (fg)∗(S) = g∗(f∗(S)), and by hypothesis f∗(S)
covers V , so the result follows by (ii). To show (iiia), note that f∗(S) covers W , and for
every arrow h:U → V of f∗(S), the sieve h∗(f∗(R)) covers U because R covers fh ∈ S;
so (iii) tells us that f∗(R) covers W .:-)

In a category with fiber products, the axioms for a Grothendieck topology can be
restated as:
(ib) If U → V is an isomorphism, then it covers V .
(iib) (Stability) If Ui → V cover V and V ′ → V is any arrow, then Ui×V V ′ → V ′ cover V ′.

(iiib) (Transitivity) If Vi → W cover W and Uij → Vi cover Vi for each i, then the
composites Uij →W cover W .
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The equivalence of this new form of the axioms is left as an easy exercice for the
reader.

A category with a Grothendieck topology on it is called a site. We now proceed to
give some examples of sites.

As we have seen in the previous section, if C is any category, and we let J(V ) be the
set of all universally effectively epimorphic sieves on V , then this is a topology on C. It
is called the canonical topology on C. A topology such that all the sieves in J(V ) are
universally effectively epimorphic for every V is said to be subcanonical. In many ways,
subcanonical topologies are the only interesting ones.

The simplest example is probably that of Set. We define a topology on Set by saying
that fi:Ui → V cover V iff V is the union of the fi(Ui). It is evident that this is a topology.
In fact, it is precisely the canonical topology on Set. The same holds for GSet. We leave
this as an exercice.

If P is a poset made into a category in the usual way, the canonical topology on P is
quite simple to describe: V is covered by the Ui (there is no need to specify the morphisms
because there is a unique morphism between any two elements of P ) iff it is the greatest
lower bound of the Ui. This applies in particular to the poset of open sets of a topological
space X, that is, to the category Open(X): the objects of Open(X) are the open subsets
of X and the morphisms are the inclusions, and the usual topology of Open(X) is the one
we have just described: V is covered by the Ui has the usual meaning.

We can also put all the sites Open(X) together in one big site in the following way:
take the category Top (or a carefully chosen subcategory such as HausTop) and for V
a topological space let S ∈ J(V ) iff S is a sieve consisting of arrows fi:Ui → V that are
open embeddings and satisfy V =

⋃
fi(Ui). For obvious reasons, this topology is called the

open cover or “usual” topology on Top.

Another interesting topology on Top is the étale topology, which we now describe.
Recall that a continuous map f :X → Y of topological spaces is said to be étale (or a local
homeomorphism) iff for every x ∈ X there exists a neighborhood U of x in X (which we
can assume to be open) such that the restriction of f to U is a homeomorphism onto its
image. The étale topology on Top is defined exactly as the open cover topology above
but replacing the words “open embeddings” by “étale”. This uses the rather simple fact
that the pullback of an étale map by an arbitrary map is still étale (treat the case of a
product and a subspace separately, and both are easy). We also note that if g:U → V
is a continuous map such that f :V → X and gf :U → X are étale, then g itself is étale.
In particular, if we consider the category Étale(X) of étale morphisms U → X (a full
subcategory of the slice category Top ↓ X), all its morphisms are themselves étale. We
have an obvious topology on Étale(X), and we call this site the étale site of X. It plays for
the étale topology on Top a similar role to that of Open(X) for the open cover topology.

We now describe sheafs on a site.

Let C be a category and J a Grothendieck topology on C. Let F ∈ ob Ĉ be a
presheaf on C (recall that this is just a contravariant functor from C to Set). If V ∈ ob C
and S ∈ J(V ), by a matching family (on the sieve S for the presheaf F) we mean a family
(xf )f∈S of sets with xf ∈ F(dom f) that satisfies xfr = xf |r for each f ∈ S and r an arrow
with domain ran f , where xf |r stands for F(r)(xf ) (the restriction of xf following r). If
(xf ) is such a matching family, by an amalgamation of (xf ) we mean an element x ∈ F(V )
such that xf = x|f for each f ∈ S (here again, x|f stands for F(f)(x). We say that
F is a monopresheaf or separated presheaf (resp. conjunctive sheaf, resp. sheaf) iff every
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matching family (on any sieve) has at most (resp. at least, resp. exactly) one amalgamation.
There are several alternative ways to describe this. For one thing, if one wants to

do things less “by hand”, one may describe matching families thus. Notice first that S
is a category; indeed, it is a full subcategory of the slice category C ↓ V . The presheaf
F defines a functor Sop  Set (by composing the “arrow source” functor S  C with
F : Cop  Set); this is also called a projective system of sets indexed by Sop. A matching
family is exactly an element of the projective limit of this projective system of sets. An
amalgamation is just a matching family for the full sieve, and the inclusion of S in the full
sieve determines a map from matching families on the full sieve to matching families on S.
According as this map is injective, surjective or bijective (for all sieves S in the topology
in question) we say that F is a monopresheaf, conjunctive sheaf or sheaf.

Yet another way of doing things is to look at S itself as a presheaf, which to any U
associates the set of arrows U → V that are in S. Thus, S is a subobject of the
representable presheaf y(V ) (which corresponds to the maximal sieve). A matching family
is then simply a natural transformation S → F , and an element of F(V ) can be viewed
as a natural transformation y(V ) → F . Thus we consider the map Hom(y(V ),F) →
Hom(S,F) obtained by composing with the inclusion S → y(V ); according as this map
(etc, like in the previous paragraph).

In a category with pullbacks there is yet another way of doing things: suppose Ui → V
are arrows in C. Then the we have the diagram

F(V )→
∏
i∈I
F(Ui)⇒

∏
(i,j)∈I2

F(Ui ×V Uj)

Matching families for the sieve generated by the Ui → V are “the same thing” as elements
of the kernel of the pair of maps on the right of this diagram (the argument is similar to
the one given in the previous section only less understandable), and thus F is a sheaf iff
the diagram above is an equalizer for every covering family of arrows. :-(We sketch the
proof. Matching families for the sieve generated by the (fi:Ui → V )i∈I can be identified
with families (xi)i∈I such that if k1:Z → Ui1 and k2:Z → Ui2 are such that fi1k1 = fi2k2

then also xi1 |k1 = xi2 |k2 . We have to show that this condition is equivalent to saying that
hip1ij = hjp2ij for every i, j, where we write p1ij :Ui×V Uj → Ui and p2ij :Ui×V Uj → Uj for
the two projections. Now if (xi) is a matching family, then letting k1 = p1ij and k2 = p2ij

we see that hip1ij = hjp2ij . Conversely, if this is true for every i, j, and if k1:Z → Ui1
and k2:Z → Ui2 are such that fi1k1 = fi2k2, then k1 and k2 factor through Ui1 ×V Ui2 ,
and so we have the desired result (see the previous section for details).:-)

If J and J ′ are two Grothendieck topologies on the same category C, we say that J
is bigger than J ′, or that J ′ is smaller than J , iff J(V ) ⊇ J ′(V ) for every V ∈ ob C (the
terms “finer” and “coarser” are sometimes used, but they are better avoided because there
is some doubt about which is which). The smallest topology on C is the one for which
J(V ) consists of the single maximal sieve for every V ; the biggest topology is the one for
which every sieve covers its codomain. These two topologies are respectively called the
discrete and coarse topology, but that is probably a bad idea (the discrete topology on a
topological space is does not lead to the discrete topology on its category of open sets, and
same thing for the coarse topology; moreover, some authors say that a topology is “finer”
than another one when it is bigger, so the coarse topology is the finest topology, not a
very good idea). A topology which is slightly smaller than the biggest (coarse) topology
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is the one for which a sieve covers its codomain iff it is nonempty; we need a condition
for this to be a topology, namely that every pair of arrows with common codomain can be
completed to a commutative (not necessarily cartesian) square; the topology thus defined
is called the atomic topology. Note also that the intersection of a family (Ji) of topologies
on a common category C (by this we mean the topology J defined by J(V ) =

⋂
i Ji(V ))

is also a topolog (we make the convention that the intersection of an empty family gives
the biggest topology). The union of a family of topologies does not have to be a topology;
however, every family of topologies has a least upper bound, namely the intersection of all
topologies which are bigger than all of the members of the family.

We say of a sieve S (or of a family of arrows that generate it) that it is dominant
(resp. conjunctive, resp. covering) for a presheaf F iff every matching family on S
for F has at most (resp. at least, resp. exactly) one amalgamation. Thus, a presheaf
is a monopresheaf (resp. conjunctive, resp. a sheaf) iff every sieve of the topology is
dominant (resp. conjunctive, resp. covering) for it. Clearly, the bigger the topology the
harder it is for a presheaf to be a monopresheaf, conjunctive or a sheaf. We say that a
sieve S with codomain W (or a family of arrows that generate it) is universally dominant
(resp. universally conjunctive, resp. universally covering) for a presheaf F iff its inverse
image h∗(S) by any arrow h:V → W is dominant (resp. conjunctive, resp. covering)
for F . Clearly, it is equivalent to require that a topology makes F into a monopresheaf
(resp. a conjunctive presheaf, resp. a sheaf)) or to require that all its sieves are dominant
(resp. conjunctive, resp. covering) for F , or the same condition with “universally” added
everywhere. So we have an obvious candidate for a (potential) biggest topology for which F
is a monopresheaf (resp. conjunctive, resp. a sheaf), namely the map taking each V to the
set of universally dominant (resp. universally conjunctive, resp. universally covering) sieves
for F with codomain V . Now it turns out that for “universally dominant” and “universally
covering” this works, in other words, for any presheaf F on C there is a biggest topology
making F into a monopresheaf (resp. a sheaf), namely the topology which consists of
all universally dominant (resp. universally covering) sieves. (We omit the proof — only
transitivity has to be proven, of course, and that works just like in the previous section.)
However, this does not work for “conjunctive”, and that is probably the reason why
everything with “conjunctive” in it is mainly folklore, and need not really concern us. Of
course, taking intersections of topologies, we get the same result for families of presheaves.
Thus the canonical topology is the biggest topology for which all representable presheaves
are sheaves. And a subcanonical topology is one for which all representable presheaves are
sheaves, i.e. one smaller than the canonical topology.

It is time we made sheaves into a category. No sooner said then done: a morphism
of sheaves is by definition a morphism of presheaves between sheaves (and we recall that
a morphism of presheaves is just a natural transformation between functors). Thus the

category Sheave(C, J) of sheaves on a site (C, J) is a full subcategory of Ĉ. If J is

subcanonical, it contains C (identified with its image in Ĉ — somewhat abusively). When
the topology J is understood, one sometimes writes C̃ for the category of sheaves on C.
A category which is equivalent to a category Sheave(C, J) is called a Grothendieck topos
(more general topoi, namely elementary topoi, which are actually far easier to define,
correspond to more general topologies, namely Lawvere-Tierney topologies). We note that
a projective limit in the category of presheaves on C of presheaves which actually turn
out to be sheaves, is itself a sheaf. :-(This is because the condition for being a sheaf is
expressed with limits and that limits commute with limits.:-) In other words, limits exist
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in sheaf categories, and are computed pointwise (the inclusion functor from the category
of sheaves to the category of presheaves commutes with limits — we shall see below that
it has a left adjoint).

Let F be a presheaf on a category C, and J a Grothendieck topology on C. We
define a new presheaf F+ on C in the following way: if V ∈ ob C, we let F+(V ) consist of
equivalence classes of matching families for F on sieves in J(V ). In other words, an element
of F+(V ) is a matching family (xf )f∈S for some S ∈ J(V ). We must describe when two
such families are deemed equal. First note that if S and S′ are two sieves in J(V ) such
that S′ ⊆ S (we say that S′ is a refinement of S, or that it is finer than S) then a matching
family for F on S determines by restriction to S′ a matching family on S. Also note that
if S and S′ are two sieves in J(V ) then there is a sieve in J(V ) that is a refinement of
both; in fact, S ∩ S′ is in J(V ) (we have seen this above, number (v)). So we have an
obvious equivalence relation: a matching family on S and a matching family on S′ will be
considered equal iff they induce the same matching family on some common refinement
of S and S′ (obviously, in virtue of what we have said, this is an equivalence relation).
Then we have to make F+ into a presheaf. That is quite easy: if h:V → W is an arrow,
we let F+(h) be the map which takes (the equivalence class of) a matching family (xf )f∈S
on a sieve S ∈ J(W ) to the (equivalence class of the) matching family (xhf )f∈h∗(S). It
is obvious that this is well defined and makes F+ into a presheaf. Now we have to make
the construction F 7→ F+ into a functor (an endofunctor of Ĉ). So if γ:F → G is a
morphism of presheaves (that is, a natural transformation), we define γ+:F+ → G+ as
follows: if V ∈ ob C, and (xf )f∈S represents an element of F+(V ), where S ∈ J(V ), then
we let its image by γ+

V be the class of the matching family (yf )f∈S , where yf = γU (xf )
if f :U → V . By naturality of γ, this defines a matching family, and it is obvious that this
definition makes sense (i.e. is compatible with the equivalence relations); the naturality
of γ+ is easier to see than to state, and the functoriality of the —+ functor is then perfectly
clear. Also, we have a canonical morphism F → F+, which takes an x ∈ F(V ) to the
family (xf ) ∈ F+(V ) defined over the maximal sieve on V and such that x1V = x. This
morphism is a monomorphism (resp. an isomorphism) (i.e. F(V ) → F+(V ) is injective
(resp. bijective) for every V ) precisely when F is a monopresheaf (resp. a sheaf) (this is
perfectly clear from the definition).

Now we prove two important results about F+. First, for any presheaf F , the
presheaf F+ is separated (i.e. is a monopresheaf). :-(Indeed, let (xf )f∈S be a matching
family for F+ on some sieve S ∈ J(V ), and suppose that it has amalgamations x and x′,
so we must show that x = x′. We can represent x by a matching family (xg)g∈T for F ,
on some sieve T in J(V ), and similarily for x′, which we can represent by a matching
family (x′g)g∈T ′ on some sieve T ′ in J(V ). That x is an amalgamation for (xf ) means that
xf is represented by the matching family (xfg)g∈f∗(T ). Similarily, it is represented by the
matching family (x′fg)g∈f∗(T ′). Thus, writing U for the domain of f , there is a sieve Qf
in J(U) such that Qf ⊆ f∗(T ) and Qf ⊆ f∗(T ′) and such that xfg = x′fg if g ∈ Qf . We
now call Q the sieve on V which consists of all fg for f ∈ S and g ∈ Qf . For h ∈ Q we have
xh = x′h, so we are done if we can prove that Q covers V . But if f ∈ S then f∗(Q) certainly
contains Qf , so it is covering. By transitivity, we are done.:-) Second, if the presheaf F is
separated (i.e. is a monopresheaf), then F+ is a sheaf. :-(Let (xf )f∈S (for some S ∈ J(V ))
be a matching family for F+. Each xf can be represented by a matching family (xf ;g)g∈Qf
for some Qf ∈ J(U) (where U is the domain of f). Moreover, the fact that (xf ) is matching
shows that for any f ∈ S and r with codomain the domain of f we have xfg = xf |g. By the

40



definition of the restriction in F+, this means that the two matching families (xfg;h)h∈Qfg
and (xf ;gh)h∈g∗(Qf ) represent the same section of F+, in other words that there is a sieve
Rf ;g that covers the domain of g, refines Qfg and g∗(Qf ), and such that for h ∈ Rf,g we
have xfg;h = xf ;gh. Now if f, f ′ ∈ S and g ∈ Qf and g′ ∈ Qf ′ are such that fg = f ′g′, then
for all h ∈ Rf,g∩Rf ′,g′ we have xf ;g|h = xf ;gh = xfg;h = xf ′g′;h = xf ′;g′h = xf ′;g′ |h′ . Since
Rf,g ∩Rf ′,g′ covers the domain of g (which is also the domain of g′) we have xf ;g = xf ′;g′ .
Thus it makes sense to define xfg = xf ;g for f ∈ S and g ∈ Qf . Now we have defined
a matching family (xk)k∈Q, where Q is the sieve of all fg for f ∈ S and g ∈ Qf . As in
the previous proof, Q covers V . So (xk) defines an element x ∈ F(V ). And it is then
clear that x is an amalgation of the (xf ). Since by the previous result we know that this
amalgamation is unique, we have shown that F+ is a sheaf.:-) In particular, we have the
following surprise: if F is an arbitrary presheaf, then a(F) = F++ is a sheaf. Of course,

since —+ is a functor, so is a: Ĉ  Sheave(C, J). To show that a is left adjoint to the

inclusion functor Sheave(C, J) Ĉ, we have to show that any morphism F → G, where
F is a presheaf and G is a sheaf, factors uniquely as an arrow a(F) → G composed with
the canonical arrow F → a(F) (which is itself obtained by composing the two canonical
arrows F → F+ and F+ → F++). To do this, we have only to show that for F → G
factors uniquely as a F+ → G composed with the canonical arrow F → F+. And this is
indeed the case. :-(Let γ:F → G be the morphism in question. If x ∈ F(V ) is represented
by a matching family (xf )f∈S for some sieve S ∈ J(V ), then (γdom f (xf ))f∈S is a matching
family of G, so it has a unique amalgamation, which we call γ̃(x). This certainly defines
a morphism γ̃:F+ → G like we wanted, and it is not hard to see that the definition was
necessary, hence the uniqueness.:-)

11. 2-categories.

We have already mentioned the category Category of categories, whose morphisms are
functors. Now this category has a remarkable additional structure: for every objects
C and D of Category, the set Hom(C,D) (which we previously have written DC) of
morphisms from C to D (that is, functors) has itself the structure of a category. We shall
write Hom(C,D) to emphasize this fact (though not always consistently). Thus, there
are not only morphisms (or 1-morphisms) between categories, but also morphisms between
these morphisms, sometimes called 2-morphisms (and which in our case are nothing else
but natural transformations). If C,D,E are objects of Category then the composition
of functors is a map Hom(D,E) × Hom(C,D) → Hom(C,E). But actually, it is more
than that: if we have natural transformations α:F→ F′ (where F,F′: C D are functors)
and β:G → G′ (where G,G′: D  E are some more functors) then we get a natural
transformation β ∗ α:GF→ G′F′ by declaring that

(β ∗ α)X = βF′X(GαX) = (G′αX)βFX

(the second equality follows by naturality of β). In other words, β ∗ α = (βF′)(Gα) =
(G′α)(βF) with the composition we have defined of functors with natural transformations.
Moreover the composition is a functor

Hom(D,E)×Hom(C,D) Hom(C,E)

of categories, and the unit-element and associativity rules when composing functors hold
not only with the above viewed as a map of sets, but also when viewed as a functor. :-(The
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“hardest” statement is proving that if F,F′: C  D, G,G′: D  E and H,H′: E  F are
functors and α:F → F′, β:G → G′ and γ:H → H′ are natural transformations then
γ ∗ (β ∗α) = (γ ∗ β) ∗α. But it is easily checked that both (γ ∗ (β ∗α))A and ((γ ∗ β) ∗α)A
are equal to

(γG′F′A)(HβF′A)(HGαA)

hence the result.:-)
This leads us to introduce a more general definition: we shall call 2-category C a class

ob(C), together with a category Hom(A,B) for each A,B ∈ ob(C) (all these categories
being disjoint), and for all A,B,C ∈ ob(C) a “composition” functor

Hom(B,C)×Hom(A,B) Hom(A,C)

which is associative whenever that makes sense and has a two-sided identity element
1A ∈ ob Hom(A,A) for each A ∈ ob(C). In other words, in a 2-category C, we have
not only objects (the elements of ob C) and morphisms (or 1-morphisms) (the objects of
Hom(A,B)) but also 2-morphisms (the morphisms of Hom(A,B)). Of course, we write
f :A → B when f is a 1-morphism between objects A and Y , and x: f → g when x is
a 2-morphism between 1-morphisms f and g (which means in particular that f and g
have the same domain and codomain — with the obvious meaning of these words). There
is a composition law for 1-morphisms, which is associative and has the 1A as two-sided
unit elements. The 2-morphisms on the other hand come with two composition laws
that should not be confused: when x: f → g and y: g → h are 2-morphisms, where
f, g, h:A → B are 1-morphisms all with the same domain and codomain, then we have
x ∈ HomHom(A,B)(f, g) and y ∈ HomHom(A,B)(g, h) and so x and y can be composed
in the category Hom(A,B), giving yx: f → h. On the other hand, if f, f ′:A → B and
g, g′:B → C are 1-morphisms (where A,B,C are three objects), then the composition
functor Hom(B,C) ×Hom(A,B)  Hom(A,C) gives, for 2-morphisms x: f → f ′ and
y: g → g′, another 2-morphism gf → g′f ′, which we write y ∗ x. We have for example,
with obvious notations, z(yx) = (zy)x (this just because Hom(A,B) forms a category
— and of course we simply write zyx), x1f = x and 1gx = x when x: f → g. We also
have z ∗ (y ∗ x) = (z ∗ y) ∗ x (this is axiomatic: it is part of the associativity statement for
the composition functor). The statement that 1A is a two-sided unit element means that
the composition-by-1A functor from Hom(A,B) to Hom(A,B), obtained by fixing one
variable in the composition functor, is the identity functor. This means that f1A = f for
any 1-morphism f :A→ B, but also that x ∗ 11A = x for any 2-morphism x: f → f ′ (with
f, f ′:A → B). We encourage the reader to read again through the section on functors
of several variables especially if he is wondering where the funny 11A came from. We
have similar statements on the right, of course. If f, f ′:A → B are 1-morphisms, that
x: f → f ′ is a 2-morphism between them, and that g:B → C is a 1-morphism, then we
can define gx = 1g ∗ x (perhaps this is not the best notation but if so too bad). Similarily,
of course, we put xh = x ∗ 1h when h:C → A. There are many remarkable identities
between all these composition laws, and we could not possibly enumerate them all. We
still mention that the functoriality of the composition functor gives 1g ∗ 1f = 1gf and also
the very important rule that if x1: f → f ′, x2: f ′ → f ′′ and y1: g → g′ and y2: g′ → g′′ then
(y2 ∗ x2)(y1 ∗ x1) = (y2y1) ∗ (x2x1), both being 2-morphisms from gf to g′′f ′′ (we let the
reader guess what the domains and codomains of the 1-morphisms in question are).

If C is a category (also called a 1-category to insist upon the difference), then we can
form a 2-category also written C by letting the objects of the 2-category be those of the
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1-category, the 1-morphisms of the 2-category be the morphisms of the 1-category and the
2-morphisms of the 2-category be only the identities, with the obvious composition rules
(namely 1f1f = 1f , and 1g ∗ 1f = 1gf since these are to hold in any case). Conversely, if
C is a 2-category, then we can form a category C by simply forgetting the 2-morphisms.
This is not a very interesting construction, but still, when we write without comment the
name of a 2-category in boldface instead of typerwriter face it means that we are forgetting
its 2-morphisms to make it into a 1-category. As for the first construction explained, we
will just identify a 1-category with the corresponding 2-category. We write Category for
the 2-category of categories (with functors as 1-morphisms and natural transformations
as 2-morphisms). Similarily, we have, for example, the 2-category Groupoid of groupoids
(recall that a groupoid is a category all of whose arrows are isomorphisms) with functors
as 1-morphisms and natural transformations as 2-morphisms.

If C is a 2-category, then a sub2category (sometimes just “subcategory”) D of C is a
2-category whose objects are a subset (subclass, subcollection) of those of C and such that
HomD(A,B) is a subcategory of HomC(A,B) whenever A,B ∈ ob D. When HomD(A,B)
is actually a full subcategory of HomC(A,B) for every A,B ∈ ob D, we say that D is a
strict sub2category of C. When the underlying category C of C is a full subcategory of the
underlying category D of D, in other words when every 1-morphism in C between objects
of D is actually in D, then we say that D is a full sub2category of C. When it is only true
that every 1-morphism in C between objects of D is isomorphic (in the obvious sense, that
is, in the corresponding category of morphisms) in C to a 1-morphism in D then we say that
D is an essentially full sub2category of C. A sub2category that is both strict and full is
said to be strictly full — while we could continue this little game for long, this is by far the
most important notion. A strictly full sub2category is uniquely determined by its objects,
and, as in the case of sub1categories we will sometimes (abusively) identify a strictly full
sub2category with its class of objects. For example, Groupoid is (by definition) a strictly
full sub2category of Category.

If C and D are 2-categories, a (2-)functor F: C  D is a datum consisting of a map
(also written F) ob C → ob D, and for each objects A,B ∈ ob C a functor (also written F)
HomC(A,B) → HomD(FA,FB) such that F takes 1A to 1FA and that F is compatible
with composition in the obvious sense. In other words, F consists of a map of objects, a
map of 1-morphisms and a map of 2-morphisms all of which satisfy all the nice properties
you can imagine, essentially F1A = 1FA, F1f = 1Ff , F(fg) = (Ff)(Fg), F(xy) = (Fx)(Fy)
and F(x ∗ y) = (Fx) ∗ (Fy) with the obvious notations. Of course, 2-functors can be
composed, and this composition law is associative whenever defined, and the (obviously
defined) identity functor on a 2-category is a two-sided unit element. This makes the
(super-duper-extra)class of all 2-categories into a category, which we will even make into
a 3-category.

If F,F′: C  D are 2-functors, then a natural transformation (or 1-morphism of 2-
functors, or 2-morphism of 2-categories) α:F→ F′ is a datum consisting of a 1-morphism
αA:FA → F′A (also written α(A)) for every object A of C such that for any 1-morphism
f :A→ B of C the diagram

FA
Ff−→ FB

α(A)
y yα(B)

GA
Gf−→ GB

commutes, in other words αB(Ff) = (F′f)αA, but we also impose αB(Fx) = (F′x)αA for
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any 2-morphism x: f → f ′ where f, f ′:A → B are 1-morphisms (recall that it is possible
to compose a 1-morphism and a 2-morphism). It is possible to represent this last condition
by the commutativity of a 2-diagram, obtained by taking the diagram above, doubling the
arrow on top and the arrow at the bottom and inserting a 2-arrow between each of the
two arrows on top and each of the two arrows at the bottom (I don’t have the patience
of doing this with TEX). If α, α′:F → F′ are natural transformations, then a natural 2-
transformation (or 2-morphism of 2-functors, or 3-morphism of 2-categories) ξ:α→ α′ is a
datum consisting of a 2-morphism ξA:αA → α′A (also written ξ(A)) for every object A of C
such that for any 1-morphism f :A→ B of C we have ξB(Ff) = (F′f)ξA (as 2-morphisms
from αB(Ff) = (F′f)αA to α′B(Ff) = (F′f)α′A); this is the statement of the commutativity
of the following 2-diagram

FA
Ff−→ FB

αA

yξA→yα′A αB

yξB→yα′B
GA

Gf−→ GB

Now 2-diagrams are ugly enough so I WON’T BE WRITING ANY MORE OF THEM. The
enterprising reader can define the notion of 3-category, and more generally of n-category,
and show that 2-categories agregate in a 3-category, and more generally that n-categories
agregate in an (n+ 1)-category.

There is another notion which will come to be useful, but I do not know whether it has
a classical name; I shall call it an “elevator” because it is related to descent arguments (!).
If C and D are 2-categories, an elevator F from C to D is a datum consisting of a map
(also written F) ob C → ob D, and for each objects A,B of C a functor (also written F)
HomC(A,B)  HomD(FA,FB) such that F1A = 1FA and that for any three objects
A,B,C of C the following diagram

HomC(B,C)×HomC(A,B) −→ HomC(A,C)
F
y yF

HomD(FB,FC)×HomD(FA,FB) −→ HomD(FA,FC)

is commutative up to natural isomorphism, these natural isomorphisms satisfying the
(obvious) cocycle condition. This means that we are given a natural isomorphism θ
such that θg,f : (Fg)(Ff) ∼= F(gf); the cocycle condition states that (θhg,f )(θh,g(Ff)) =
(θh,gf )((Fh)θg,f ). In other words, F consists of a map of objects, a map of 1-morphisms
and a map of 2-morphisms; the map of 2-morphisms preserves composition of 2-morphisms:
F(yx) = (Fy)(Fx); however, the map of 1-morphisms does not necessarily (contrarily
to functors) preserve composition, but only up to 2-isomorphism, that is, θg,f is a
2-isomorphism between (Fg)(Ff) and F(gf); these 2-isomorphisms are natural in the
sense that if x: f → f ′ and y: g → g′ are 2-morphisms (where f, f ′:A → B and
g, g′:B → C are 1-morphisms) then (F(y ∗ x))θg,f = θg′,f ′((Fy) ∗ (Fx)); and they satisfy
the cocycle condition written above. To recapitulate, the relations satisfied by F (and θ)
are: F1A = 1FA (preservation of 1-identities), F1f = 1Ff (preservation of 2-identities),
θg,f : (Fg)(Ff) ∼= F(gf) (almost-preservation of 1-composition), F(yx) = (Fy)(Fx)
(preservation of 2-composition), (θhg,f )(θh,g(Ff)) = (θh,gf )((Fh)θg,f ) (cocycle condition),
and (F(y ∗x))θg,f = θg′,f ′((Fy)∗ (Fx)) (preservation of secondary 2-composition), with the
obvious notations. In practice, elevators are most often used when the source is actually a
1-category (and the target is the 2-category of categories) so that some of these conditions
drop out.
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Now there is a little detail concerning elevators which we have to settle: namely, θ1,f

is a 2-isomorphism of Ff ; does it have to be the identity? Not necessarily, but we can
always suppose it is, by replacing θg,f by ϑg,f = θg,f ((Fg)θ−1

1,f ). Since θh,1(Ff) = (Fh)θ1,f

by the cocycle condition (put g = 1 — we omit the index on the 1), we also have
ϑg,f = θg,f (θ−1

g,1(Ff)). We now proceed to verify the cocycle condition on the ϑ (the
naturality is evident since everything in the construction is natural). We proceed through
the full verification because I had a hard time figuring it out and I don’t see why I should
be alone to suffer; but I advise the reader who trusts me to skip the end of this paragraph:
the others will pay for their insolence. :-(So, here we go. First notice that

θhg,1θh,g = θh,g((Fh)θg,1) (∗)

(set f = 1 in the cocycle condition). Now we have

ϑhg,f (ϑh,g(Ff)) = θhg,f (θ−1
hg,1(Ff))((θh,g((Fh)θ−1

1,g))(Ff))

= θhg,f (θ−1
hg,1θh,g((Fh)θ−1

1,g)(Ff))

= θhg,f (θh,g((Fh)θ−1
g,1)((Fh)θ−1

1,g)(Ff)) by (∗)
= θhg,f (θh,g(Ff))((Fh)(θ−1

g,1θ
−1
1,g)(Ff))

On the other hand, we have, following exactly the same steps,

ϑh,gf ((Fh)ϑg,f ) = θh,gf ((Fh)θ−1
1,gf )((Fh)(θg,f (θ−1

g,1(Ff))))

= θh,gf ((Fh)(θ−1
1,gfθg,f (θ−1

g,1(Ff))))

= θh,gf ((Fh)(θg,f (θ−1
1,g(Ff))(θ−1

g,1(Ff))))

= θh,gf ((Fh)θg,f )((Fh)(θ−1
1,gθ

−1
g,1)(Ff))

Comparing the two equations above and using the cocycle condition on θ, we see that to
show the cocycle condition on ϑ all we have to do is show that θ1,g and θg,1 commute.
But this follows immediately from equation (∗) by putting h = 1. Hence the result. Since
ϑ1,f = 1 and ϑg,1 = 1, ϑ satisfies with respect to F exactly the same conditions as θ.:-)
So from now on we shall always suppose that θ1,f = 1 and θg,1 = 1 when we speak of
elevators.
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12. Fibered and split categories.

When p: E  C is a functor, we say also that p or (abusively) E is a category above C.
Categories above C form a 2-category, where a 1-morphism between p: E  C and
p′: E′  C is a functor F: E  E′ such that p = p′F, and a 2-morphism between two
such 1-morphism F1,F2 is a natural transformation α:F1 → F2 such that αp = 1p′ . If U
is an object of C, we call fiber of p (or of E) above U the subcategory of E whose objects
are those objects or E which go to U under p and whose morphisms are those which go
to 1U under p. It is usually written EU when no confusion can occur.

If ϕ:U → V is an arrow of C and f :x → y is an arrow of E such that p(f) = ϕ,
then we say that f is “above” ϕ. When furthermore f is universal among such arrows, in
the sense that if g: z → y is an arrow above ϕ then there exists a unique arrow h: z → x
of EU (that is, above 1U ) such that g = fh, then we say that f , or (abusively) x is an
inverse image of y by ϕ. We also say that f is cartesian. Clearly, two inverse images of y
by ϕ are isomorphic in the obvious sense. Moreover, if each object y of EV has an inverse
image by ϕ and we choose one such inverse image for each y and call it ϕ∗y, then ϕ∗

becomes a functor from EV to EU , the action on morphisms being defined as follows: if
k: y → y′ is an arrow of EV and f :ϕ∗y → y the chosen inverse image of y, then by the
universal property of the chose inverse image f ′:ϕ∗y′ → y′ of y′, the map kf :ϕ∗y → y′

factors uniquely through f ′ so we write kf = fϕ∗k, thus defining the arrow ϕ∗k and it is
clear that ϕ∗ is then a functor.

A fibered category (above C) is a category above C, say p: E  C, such that for
every object y of E and arrow ϕ:U → V of C with py = V there exists an inverse image
of y by ϕ, and such that the composite of two cartesian morphisms is again cartesian
(which means that an inverse image by ψ of an inverse image by ϕ of z is an inverse
image by ψϕ of z). We can, as above, choose an inverse image ϕ∗y of each y for each
arrow ϕ:U → V (with V the image of y under p), and then each ϕ∗ becomes a functor
from EV to EU . One would hope to have (ψϕ)∗ = ϕ∗ψ∗ when ϕ:U → V and ψ:V →W ;
unfortunately, that is not always the case (because some choices have been made), and
the choices cannot always be made so that this be the case. However, we have something
almost as good: since for z ∈ ob EW the object ϕ∗ψ∗z of EU is an inverse image of z by ψϕ,
it is canonically isomorphic to (ψϕ)∗z, the “canonical” statement being made precise by
saying that there is a natural isomorphism θ:ϕ∗ψ∗ ∼= (ψϕ)∗ (we leave the naturality of θ
as an easy exercice). Moreover, writing θψ,ϕ:ϕ∗ψ∗ ∼= (ψϕ)∗ for the natural isomorphism
in question, and if ϕ:U → V , ψ:V →W and χ:W → X, then these isomorphisms satisfy
the following “cocycle” condition:

θχψ,ϕ(ϕ∗θχ,ψ) = θχ,ψϕ(θψ,ϕχ
∗)

which just means that the following square commutes

ϕ∗ψ∗χ∗ −→ ϕ∗(χψ)∗y y
(ψϕ)∗χ∗ −→ (χψϕ)∗

:-(The proof is a just a very complicated triviality. Of course, we can take an object t of E
above W and we just have to prove equality on t. The proof uses backward and forward
the fact that θψϕ(z) is the unique arrow in EU making the following diagram commute

(ψϕ)∗z −−−−−−−−−−−→ zy ∥∥
ϕ∗ψ∗z −→ ψ∗z −→ z

46



(and similarily for the other ones, of course). This show that about anything you can
think of, commutes.:-) This should ring a bell: we have just constructed a contravariant
elevator from C to Category. We refer to the previous section for details on elevators.
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